首页 > 编程 > Java > 正文

java实现随机森林RandomForest的示例代码

2019-11-26 11:34:56
字体:
来源:转载
供稿:网友

随机森林是由多棵树组成的分类或回归方法。主要思想来源于Bagging算法,Bagging技术思想主要是给定一弱分类器及训练集,让该学习算法训练多轮,每轮的训练集由原始训练集中有放回的随机抽取,大小一般跟原始训练集相当,这样依次训练多个弱分类器,最终的分类由这些弱分类器组合,对于分类问题一般采用多数投票法,对于回归问题一般采用简单平均法。随机森林在bagging的基础上,每个弱分类器都是决策树,决策树的生成过程中中,在属性的选择上增加了依一定概率选择属性,在这些属性中选择最佳属性及分割点,传统做法一般是全部属性中去选择最佳属性,这样随机森林有了样本选择的随机性,属性选择的随机性,这样一来增加了每个分类器的差异性、不稳定性及一定程度上避免每个分类器的过拟合(一般决策树有过拟合现象),由此组合分类器增加了最终的泛化能力。下面是代码的简单实现

/** * 随机森林 回归问题 * @author ysh  1208706282 * */public class RandomForest {  List<Sample> mSamples;  List<Cart> mCarts;  double mFeatureRate;  int mMaxDepth;  int mMinLeaf;  Random mRandom;  /**   * 加载数据  回归树   * @param path   * @param regex   * @throws Exception   */  public void loadData(String path,String regex) throws Exception{    mSamples = new ArrayList<Sample>();    BufferedReader reader = new BufferedReader(new FileReader(path));    String line = null;    String splits[] = null;    Sample sample = null;    while(null != (line=reader.readLine())){      splits = line.split(regex);      sample = new Sample();      sample.label = Double.valueOf(splits[0]);      sample.feature = new ArrayList<Double>(splits.length-1);      for(int i=0;i<splits.length-1;i++){        sample.feature.add(new Double(splits[i+1]));      }      mSamples.add(sample);    }    reader.close();  }  public void train(int iters){    mCarts = new ArrayList<Cart>(iters);    Cart cart = null;    for(int iter=0;iter<iters;iter++){      cart = new Cart();      cart.mFeatureRate = mFeatureRate;      cart.mMaxDepth = mMaxDepth;      cart.mMinLeaf = mMinLeaf;      cart.mRandom = mRandom;      List<Sample> s = new ArrayList<Sample>(mSamples.size());      for(int i=0;i<mSamples.size();i++){        s.add(mSamples.get(cart.mRandom.nextInt(mSamples.size())));      }      cart.setData(s);      cart.train();      mCarts.add(cart);      System.out.println("iter: "+iter);      s = null;    }  }  /**   * 回归问题简单平均法 分类问题多数投票法   * @param sample   * @return   */  public double classify(Sample sample){    double val = 0;    for(Cart cart:mCarts){      val += cart.classify(sample);    }    return val/mCarts.size();  }  /**   * @param args   * @throws Exception    */  public static void main(String[] args) throws Exception {    // TODO Auto-generated method stub    RandomForest forest = new RandomForest();    forest.loadData("F:/2016-contest/20161001/train_data_1.csv", ",");    forest.mFeatureRate = 0.8;    forest.mMaxDepth = 3;    forest.mMinLeaf = 1;    forest.mRandom = new Random();    forest.mRandom.setSeed(100);    forest.train(100);        List<Sample> samples = Cart.loadTestData("F:/2016-contest/20161001/valid_data_1.csv", true, ",");    double sum = 0;    for(Sample s:samples){      double val = forest.classify(s);      sum += (val-s.label)*(val-s.label);      System.out.println(val+" "+s.label);    }    System.out.println(sum/samples.size()+" "+sum);    System.out.println(System.currentTimeMillis());  }}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持武林网。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表