首页 > 编程 > Java > 正文

Java concurrency集合之ConcurrentSkipListMap_动力节点Java学院整理

2019-11-26 12:04:32
字体:
来源:转载
供稿:网友

ConcurrentSkipListMap介绍

ConcurrentSkipListMap是线程安全的有序的哈希表,适用于高并发的场景。

ConcurrentSkipListMap和TreeMap,它们虽然都是有序的哈希表。但是,第一,它们的线程安全机制不同,TreeMap是非线程安全的,而ConcurrentSkipListMap是线程安全的。第二,ConcurrentSkipListMap是通过跳表实现的,而TreeMap是通过红黑树实现的。

关于跳表(Skip List),它是平衡树的一种替代的数据结构,但是和红黑树不相同的是,跳表对于树的平衡的实现是基于一种随机化的算法的,这样也就是说跳表的插入和删除的工作是比较简单的。 

ConcurrentSkipListMap原理和数据结构

ConcurrentSkipListMap的数据结构,如下图所示:

说明:

先以数据“7,14,21,32,37,71,85”序列为例,来对跳表进行简单说明。

跳表分为许多层(level),每一层都可以看作是数据的索引,这些索引的意义就是加快跳表查找数据速度。每一层的数据都是有序的,上一层数据是下一层数据的子集,并且第一层(level 1)包含了全部的数据;层次越高,跳跃性越大,包含的数据越少。
跳表包含一个表头,它查找数据时,是从上往下,从左往右进行查找。现在“需要找出值为32的节点”为例,来对比说明跳表和普遍的链表。

情况1:链表中查找“32”节点

路径如下图1-02所示:

需要4步(红色部分表示路径)。

情况2:跳表中查找“32”节点

路径如下图1-03所示:

忽略索引垂直线路上路径的情况下,只需要2步(红色部分表示路径)。

下面说说Java中ConcurrentSkipListMap的数据结构。
(01) ConcurrentSkipListMap继承于AbstractMap类,也就意味着它是一个哈希表。
(02) Index是ConcurrentSkipListMap的内部类,它与“跳表中的索引相对应”。HeadIndex继承于Index,ConcurrentSkipListMap中含有一个HeadIndex的对象head,head是“跳表的表头”。
(03) Index是跳表中的索引,它包含“右索引的指针(right)”,“下索引的指针(down)”和“哈希表节点node”。node是Node的对象,Node也是ConcurrentSkipListMap中的内部类。 

ConcurrentSkipListMap函数列表

// 构造一个新的空映射,该映射按照键的自然顺序进行排序。ConcurrentSkipListMap()// 构造一个新的空映射,该映射按照指定的比较器进行排序。ConcurrentSkipListMap(Comparator<? super K> comparator)// 构造一个新映射,该映射所包含的映射关系与给定映射包含的映射关系相同,并按照键的自然顺序进行排序。ConcurrentSkipListMap(Map<? extends K,? extends V> m)// 构造一个新映射,该映射所包含的映射关系与指定的有序映射包含的映射关系相同,使用的顺序也相同。ConcurrentSkipListMap(SortedMap<K,? extends V> m)// 返回与大于等于给定键的最小键关联的键-值映射关系;如果不存在这样的条目,则返回 null。Map.Entry<K,V> ceilingEntry(K key)// 返回大于等于给定键的最小键;如果不存在这样的键,则返回 null。K ceilingKey(K key)// 从此映射中移除所有映射关系。void clear()// 返回此 ConcurrentSkipListMap 实例的浅表副本。ConcurrentSkipListMap<K,V> clone()// 返回对此映射中的键进行排序的比较器;如果此映射使用键的自然顺序,则返回 null。Comparator<? super K> comparator()// 如果此映射包含指定键的映射关系,则返回 true。boolean containsKey(Object key)// 如果此映射为指定值映射一个或多个键,则返回 true。boolean containsValue(Object value)// 返回此映射中所包含键的逆序 NavigableSet 视图。NavigableSet<K> descendingKeySet()// 返回此映射中所包含映射关系的逆序视图。ConcurrentNavigableMap<K,V> descendingMap()// 返回此映射中所包含的映射关系的 Set 视图。Set<Map.Entry<K,V>> entrySet()// 比较指定对象与此映射的相等性。boolean equals(Object o)// 返回与此映射中的最小键关联的键-值映射关系;如果该映射为空,则返回 null。Map.Entry<K,V> firstEntry()// 返回此映射中当前第一个(最低)键。K firstKey()// 返回与小于等于给定键的最大键关联的键-值映射关系;如果不存在这样的键,则返回 null。Map.Entry<K,V> floorEntry(K key)// 返回小于等于给定键的最大键;如果不存在这样的键,则返回 null。K floorKey(K key)// 返回指定键所映射到的值;如果此映射不包含该键的映射关系,则返回 null。V get(Object key)// 返回此映射的部分视图,其键值严格小于 toKey。ConcurrentNavigableMap<K,V> headMap(K toKey)// 返回此映射的部分视图,其键小于(或等于,如果 inclusive 为 true)toKey。ConcurrentNavigableMap<K,V> headMap(K toKey, boolean inclusive)// 返回与严格大于给定键的最小键关联的键-值映射关系;如果不存在这样的键,则返回 null。Map.Entry<K,V> higherEntry(K key)// 返回严格大于给定键的最小键;如果不存在这样的键,则返回 null。K higherKey(K key)// 如果此映射未包含键-值映射关系,则返回 true。boolean isEmpty()// 返回此映射中所包含键的 NavigableSet 视图。NavigableSet<K> keySet()// 返回与此映射中的最大键关联的键-值映射关系;如果该映射为空,则返回 null。Map.Entry<K,V> lastEntry()// 返回映射中当前最后一个(最高)键。K lastKey()// 返回与严格小于给定键的最大键关联的键-值映射关系;如果不存在这样的键,则返回 null。Map.Entry<K,V> lowerEntry(K key)// 返回严格小于给定键的最大键;如果不存在这样的键,则返回 null。K lowerKey(K key)// 返回此映射中所包含键的 NavigableSet 视图。NavigableSet<K> navigableKeySet()// 移除并返回与此映射中的最小键关联的键-值映射关系;如果该映射为空,则返回 null。Map.Entry<K,V> pollFirstEntry()// 移除并返回与此映射中的最大键关联的键-值映射关系;如果该映射为空,则返回 null。Map.Entry<K,V> pollLastEntry()// 将指定值与此映射中的指定键关联。V put(K key, V value)// 如果指定键已经不再与某个值相关联,则将它与给定值关联。V putIfAbsent(K key, V value)// 从此映射中移除指定键的映射关系(如果存在)。V remove(Object key)// 只有目前将键的条目映射到给定值时,才移除该键的条目。boolean remove(Object key, Object value)// 只有目前将键的条目映射到某一值时,才替换该键的条目。V replace(K key, V value)// 只有目前将键的条目映射到给定值时,才替换该键的条目。boolean replace(K key, V oldValue, V newValue)// 返回此映射中的键-值映射关系数。int size()// 返回此映射的部分视图,其键的范围从 fromKey 到 toKey。ConcurrentNavigableMap<K,V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive)// 返回此映射的部分视图,其键值的范围从 fromKey(包括)到 toKey(不包括)。ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey)// 返回此映射的部分视图,其键大于等于 fromKey。ConcurrentNavigableMap<K,V> tailMap(K fromKey)// 返回此映射的部分视图,其键大于(或等于,如果 inclusive 为 true)fromKey。ConcurrentNavigableMap<K,V> tailMap(K fromKey, boolean inclusive)// 返回此映射中所包含值的 Collection 视图。Collection<V> values()

下面从ConcurrentSkipListMap的添加,删除,获取这3个方面对它进行分析。

1. 添加

下面以put(K key, V value)为例,对ConcurrentSkipListMap的添加方法进行说明。

public V put(K key, V value) {  if (value == null)    throw new NullPointerException();  return doPut(key, value, false);}

实际上,put()是通过doPut()将key-value键值对添加到ConcurrentSkipListMap中的。

doPut()的源码如下:

private V doPut(K kkey, V value, boolean onlyIfAbsent) {  Comparable<? super K> key = comparable(kkey);  for (;;) {    // 找到key的前继节点    Node<K,V> b = findPredecessor(key);    // 设置n为“key的前继节点的后继节点”,即n应该是“插入节点”的“后继节点”    Node<K,V> n = b.next;    for (;;) {      if (n != null) {        Node<K,V> f = n.next;        // 如果两次获得的b.next不是相同的Node,就跳转到”外层for循环“,重新获得b和n后再遍历。        if (n != b.next)          break;        // v是“n的值”        Object v = n.value;        // 当n的值为null(意味着其它线程删除了n);此时删除b的下一个节点,然后跳转到”外层for循环“,重新获得b和n后再遍历。        if (v == null) {        // n is deleted          n.helpDelete(b, f);          break;        }        // 如果其它线程删除了b;则跳转到”外层for循环“,重新获得b和n后再遍历。        if (v == n || b.value == null) // b is deleted          break;        // 比较key和n.key        int c = key.compareTo(n.key);        if (c > 0) {          b = n;          n = f;          continue;        }        if (c == 0) {          if (onlyIfAbsent || n.casValue(v, value))            return (V)v;          else            break; // restart if lost race to replace value        }        // else c < 0; fall through      }      // 新建节点(对应是“要插入的键值对”)      Node<K,V> z = new Node<K,V>(kkey, value, n);      // 设置“b的后继节点”为z      if (!b.casNext(n, z))        break;     // 多线程情况下,break才可能发生(其它线程对b进行了操作)      // 随机获取一个level      // 然后在“第1层”到“第level层”的链表中都插入新建节点      int level = randomLevel();      if (level > 0)        insertIndex(z, level);      return null;    }  }}

说明:doPut() 的作用就是将键值对添加到“跳表”中。
要想搞清doPut(),首先要弄清楚它的主干部分 ―― 我们先单纯的只考虑“单线程的情况下,将key-value添加到跳表中”,即忽略“多线程相关的内容”。它的流程如下:

第1步:找到“插入位置”。
即,找到“key的前继节点(b)”和“key的后继节点(n)”;key是要插入节点的键。

第2步:新建并插入节点。
即,新建节点z(key对应的节点),并将新节点z插入到“跳表”中(设置“b的后继节点为z”,“z的后继节点为n”)。

第3步:更新跳表。
即,随机获取一个level,然后在“跳表”的第1层~第level层之间,每一层都插入节点z;在第level层之上就不再插入节点了。若level数值大于“跳表的层次”,则新建一层。

主干部分“对应的精简后的doPut()的代码”如下(仅供参考):

private V doPut(K kkey, V value, boolean onlyIfAbsent) {  Comparable<? super K> key = comparable(kkey);  for (;;) {    // 找到key的前继节点    Node<K,V> b = findPredecessor(key);    // 设置n为key的后继节点    Node<K,V> n = b.next;    for (;;) {            // 新建节点(对应是“要被插入的键值对”)      Node<K,V> z = new Node<K,V>(kkey, value, n);      // 设置“b的后继节点”为z      b.casNext(n, z);      // 随机获取一个level      // 然后在“第1层”到“第level层”的链表中都插入新建节点      int level = randomLevel();      if (level > 0)        insertIndex(z, level);      return null;    }  }}

理清主干之后,剩余的工作就相对简单了。主要是上面几步的对应算法的具体实现,以及多线程相关情况的处理!

2. 删除

下面以remove(Object key)为例,对ConcurrentSkipListMap的删除方法进行说明。

public V remove(Object key) {  return doRemove(key, null);}

实际上,remove()是通过doRemove()将ConcurrentSkipListMap中的key对应的键值对删除的。

doRemove()的源码如下: 

final V doRemove(Object okey, Object value) {  Comparable<? super K> key = comparable(okey);  for (;;) {    // 找到“key的前继节点”    Node<K,V> b = findPredecessor(key);    // 设置n为“b的后继节点”(即若key存在于“跳表中”,n就是key对应的节点)    Node<K,V> n = b.next;    for (;;) {      if (n == null)        return null;      // f是“当前节点n的后继节点”      Node<K,V> f = n.next;      // 如果两次读取到的“b的后继节点”不同(其它线程操作了该跳表),则返回到“外层for循环”重新遍历。      if (n != b.next)          // inconsistent read        break;      // 如果“当前节点n的值”变为null(其它线程操作了该跳表),则返回到“外层for循环”重新遍历。      Object v = n.value;      if (v == null) {          // n is deleted        n.helpDelete(b, f);        break;      }      // 如果“前继节点b”被删除(其它线程操作了该跳表),则返回到“外层for循环”重新遍历。      if (v == n || b.value == null)   // b is deleted        break;      int c = key.compareTo(n.key);      if (c < 0)        return null;      if (c > 0) {        b = n;        n = f;        continue;      }      // 以下是c=0的情况      if (value != null && !value.equals(v))        return null;      // 设置“当前节点n”的值为null      if (!n.casValue(v, null))        break;      // 设置“b的后继节点”为f      if (!n.appendMarker(f) || !b.casNext(n, f))        findNode(key);         // Retry via findNode      else {        // 清除“跳表”中每一层的key节点        findPredecessor(key);      // Clean index        // 如果“表头的右索引为空”,则将“跳表的层次”-1。        if (head.right == null)          tryReduceLevel();      }      return (V)v;    }  }}

说明:doRemove()的作用是删除跳表中的节点。
和doPut()一样,我们重点看doRemove()的主干部分,了解主干部分之后,其余部分就非常容易理解了。下面是“单线程的情况下,删除跳表中键值对的步骤”:

第1步:找到“被删除节点的位置”。
即,找到“key的前继节点(b)”,“key所对应的节点(n)”,“n的后继节点f”;key是要删除节点的键。

第2步:删除节点。
即,将“key所对应的节点n”从跳表中移除 -- 将“b的后继节点”设为“f”!

第3步:更新跳表。
即,遍历跳表,删除每一层的“key节点”(如果存在的话)。如果删除“key节点”之后,跳表的层次需要-1;则执行相应的操作!

主干部分“对应的精简后的doRemove()的代码”如下(仅供参考): 

final V doRemove(Object okey, Object value) {  Comparable<? super K> key = comparable(okey);  for (;;) {    // 找到“key的前继节点”    Node<K,V> b = findPredecessor(key);    // 设置n为“b的后继节点”(即若key存在于“跳表中”,n就是key对应的节点)    Node<K,V> n = b.next;    for (;;) {      // f是“当前节点n的后继节点”      Node<K,V> f = n.next;      // 设置“当前节点n”的值为null      n.casValue(v, null);      // 设置“b的后继节点”为f      b.casNext(n, f);      // 清除“跳表”中每一层的key节点      findPredecessor(key);      // 如果“表头的右索引为空”,则将“跳表的层次”-1。      if (head.right == null)        tryReduceLevel();      return (V)v;    }  }}

3. 获取

下面以get(Object key)为例,对ConcurrentSkipListMap的获取方法进行说明。

public V get(Object key) {  return doGet(key);}

doGet的源码如下:

private V doGet(Object okey) {  Comparable<? super K> key = comparable(okey);  for (;;) {    // 找到“key对应的节点”    Node<K,V> n = findNode(key);    if (n == null)      return null;    Object v = n.value;    if (v != null)      return (V)v;  }}

说明:doGet()是通过findNode()找到并返回节点的。

private Node<K,V> findNode(Comparable<? super K> key) {  for (;;) {    // 找到key的前继节点    Node<K,V> b = findPredecessor(key);    // 设置n为“b的后继节点”(即若key存在于“跳表中”,n就是key对应的节点)    Node<K,V> n = b.next;    for (;;) {      // 如果“n为null”,则跳转中不存在key对应的节点,直接返回null。      if (n == null)        return null;      Node<K,V> f = n.next;      // 如果两次读取到的“b的后继节点”不同(其它线程操作了该跳表),则返回到“外层for循环”重新遍历。      if (n != b.next)        // inconsistent read        break;      Object v = n.value;      // 如果“当前节点n的值”变为null(其它线程操作了该跳表),则返回到“外层for循环”重新遍历。      if (v == null) {        // n is deleted        n.helpDelete(b, f);        break;      }      if (v == n || b.value == null) // b is deleted        break;      // 若n是当前节点,则返回n。      int c = key.compareTo(n.key);      if (c == 0)        return n;      // 若“节点n的key”小于“key”,则说明跳表中不存在key对应的节点,返回null      if (c < 0)        return null;      // 若“节点n的key”大于“key”,则更新b和n,继续查找。      b = n;      n = f;    }  }}

说明:findNode(key)的作用是在返回跳表中key对应的节点;存在则返回节点,不存在则返回null。
先弄清函数的主干部分,即抛开“多线程相关内容”,单纯的考虑单线程情况下,从跳表获取节点的算法。

第1步:找到“被删除节点的位置”。
根据findPredecessor()定位key所在的层次以及找到key的前继节点(b),然后找到b的后继节点n。

第2步:根据“key的前继节点(b)”和“key的前继节点的后继节点(n)”来定位“key对应的节点”。
具体是通过比较“n的键值”和“key”的大小。如果相等,则n就是所要查找的键。 

ConcurrentSkipListMap示例

import java.util.*;import java.util.concurrent.*;/* *  ConcurrentSkipListMap是“线程安全”的哈希表,而TreeMap是非线程安全的。 * *  下面是“多个线程同时操作并且遍历map”的示例 *  (01) 当map是ConcurrentSkipListMap对象时,程序能正常运行。 *  (02) 当map是TreeMap对象时,程序会产生ConcurrentModificationException异常。 * * @author skywang */public class ConcurrentSkipListMapDemo1 {  // TODO: map是TreeMap对象时,程序会出错。  //private static Map<String, String> map = new TreeMap<String, String>();  private static Map<String, String> map = new ConcurrentSkipListMap<String, String>();  public static void main(String[] args) {      // 同时启动两个线程对map进行操作!    new MyThread("a").start();    new MyThread("b").start();  }  private static void printAll() {    String key, value;    Iterator iter = map.entrySet().iterator();    while(iter.hasNext()) {      Map.Entry entry = (Map.Entry)iter.next();      key = (String)entry.getKey();      value = (String)entry.getValue();      System.out.print("("+key+", "+value+"), ");    }    System.out.println();  }  private static class MyThread extends Thread {    MyThread(String name) {      super(name);    }    @Override    public void run() {        int i = 0;      while (i++ < 6) {        // “线程名” + "序号"        String val = Thread.currentThread().getName()+i;        map.put(val, "0");        // 通过“Iterator”遍历map。        printAll();      }    }  }}

(某一次)运行结果:

 (a1, 0), (a1, 0), (b1, 0), (b1, 0),(a1, 0), (b1, 0), (b2, 0), (a1, 0), (a1, 0), (a2, 0), (a2, 0), (b1, 0), (b1, 0), (b2, 0), (b2, 0), (b3, 0), (b3, 0), (a1, 0), (a2, 0), (a3, 0), (a1, 0), (b1, 0), (a2, 0), (b2, 0), (a3, 0), (b3, 0), (b1, 0), (b4, 0), (b2, 0), (a1, 0), (b3, 0), (a2, 0), (b4, 0), (a3, 0), (a1, 0), (a4, 0), (a2, 0), (b1, 0), (a3, 0), (b2, 0), (a4, 0), (b3, 0), (b1, 0), (b4, 0), (b2, 0), (b5, 0), (b3, 0), (a1, 0), (b4, 0), (a2, 0), (b5, 0), (a3, 0), (a1, 0), (a4, 0), (a2, 0), (a5, 0), (a3, 0), (b1, 0), (a4, 0), (b2, 0), (a5, 0), (b3, 0), (b1, 0), (b4, 0), (b2, 0), (b5, 0), (b3, 0), (b6, 0), (b4, 0), (a1, 0), (b5, 0), (a2, 0), (b6, 0), (a3, 0), (a4, 0), (a5, 0), (a6, 0), (b1, 0), (b2, 0), (b3, 0), (b4, 0), (b5, 0), (b6, 0), 

结果说明:

示例程序中,启动两个线程(线程a和线程b)分别对ConcurrentSkipListMap进行操作。以线程a而言,它会先获取“线程名”+“序号”,然后将该字符串作为key,将“0”作为value,插入到ConcurrentSkipListMap中;接着,遍历并输出ConcurrentSkipListMap中的全部元素。 线程b的操作和线程a一样,只不过线程b的名字和线程a的名字不同。

当map是ConcurrentSkipListMap对象时,程序能正常运行。如果将map改为TreeMap时,程序会产生ConcurrentModificationException异常。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持武林网。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表