首页 > 编程 > Java > 正文

JAVA 实现二叉树(链式存储结构)

2019-11-26 14:04:19
字体:
来源:转载
供稿:网友

二叉树的分类(按存储结构)

树的分类(按存储结构)

              顺序存储(用数组表示(静态二叉树))
      链式存储

一些特别的二叉根:

                                   完全二叉树,平衡二叉树(AVL),线索二叉树,三叉的(带父亲的指针)
            二叉搜索树或者叫二叉 查找树(BST)

 所用二叉树如下图所示:

 

二叉树的Java实现(链式存储结构)

class TreeNode {  private int key = 0;  private String data = null;  private boolean isVisted = false;  private TreeNode leftChild = null;  private TreeNode rightChild = null;    public TreeNode(){      }  public TreeNode(int key, String data){    this.key = key;    this.data = data;    this.leftChild = null;    this.rightChild = null;  }  public int getKey() {    return key;  }  public void setKey(int key) {    this.key = key;  }  public String getData() {    return data;  }  public void setData(String data) {    this.data = data;  }  public TreeNode getLeftChild() {    return leftChild;  }  public void setLeftChild(TreeNode leftChild) {    this.leftChild = leftChild;  }  public TreeNode getRightChild() {    return rightChild;  }  public void setRightChild(TreeNode rightChild) {    this.rightChild = rightChild;  }  public boolean isVisted() {    return isVisted;  }  public void setVisted(boolean isVisted) {    this.isVisted = isVisted;  }}public class BinaryTree {  private TreeNode root = null;  public BinaryTree() {    root = new TreeNode(1, "rootNode(A)");  }  public void createBinTree(TreeNode root){    //手动的创建(结构如图所示)    TreeNode newNodeB = new TreeNode(2,"B");    TreeNode newNodeC = new TreeNode(3,"C");    TreeNode newNodeD = new TreeNode(4,"D");    TreeNode newNodeE = new TreeNode(5,"E");    TreeNode newNodeF = new TreeNode(6,"F");    root.setLeftChild(newNodeB);    root.setRightChild(newNodeC);    root.getLeftChild().setLeftChild(newNodeD);    root.getLeftChild().setRightChild(newNodeE);    root.getRightChild().setRightChild(newNodeF);  }  public boolean IsEmpty() {    // 判二叉树空否    return root == null;  }  public int Height() {    // 求树高度    return Height(root);  }  public int Height(TreeNode subTree) {    if (subTree == null)      return 0; //递归结束:空树高度为0    else {      int i = Height(subTree.getLeftChild());      int j = Height(subTree.getRightChild());      return (i < j) ? j + 1 : i + 1;    }  }  public int Size() {    // 求结点数    return Size(root);  }  public int Size(TreeNode subTree) {    if (subTree == null)      return 0;    else {      return 1 + Size(subTree.getLeftChild())          + Size(subTree.getRightChild());    }  }  public TreeNode Parent(TreeNode element) {    //返回双亲结点    return (root == null || root == element) ? null : Parent(root, element);  }  public TreeNode Parent(TreeNode subTree, TreeNode element) {    if (subTree == null)      return null;    if (subTree.getLeftChild() == element        || subTree.getRightChild() == element)      //找到, 返回父结点地址      return subTree;    TreeNode p;    //先在左子树中找,如果左子树中没有找到,才到右子树去找    if ((p = Parent(subTree.getLeftChild(), element)) != null)      //递归在左子树中搜索      return p;    else      //递归在左子树中搜索      return Parent(subTree.getRightChild(), element);  }  public TreeNode LeftChild(TreeNode element) {    //返回左子树    return (element != null) ? element.getLeftChild() : null;  }  public TreeNode RightChild(TreeNode element) {    //返回右子树    return (element != null) ? element.getRightChild() : null;  }  public TreeNode getRoot() {    //取得根结点    return root;  }  public void destroy(TreeNode subTree) {    //私有函数: 删除根为subTree的子树    if (subTree != null) {      destroy(subTree.getLeftChild()); //删除左子树      destroy(subTree.getRightChild()); //删除右子树      //delete subTree;       //删除根结点      subTree = null;    }  }  public void Traverse(TreeNode subTree) {    System.out.println("key:" + subTree.getKey() + "--name:"        + subTree.getData());    Traverse(subTree.getLeftChild());    Traverse(subTree.getRightChild());  }  public void PreOrder(TreeNode subTree) {    //先根    if (subTree != null) {      visted(subTree);      PreOrder(subTree.getLeftChild());      PreOrder(subTree.getRightChild());    }  }  public void InOrder(TreeNode subTree) {    //中根    if (subTree != null) {      InOrder(subTree.getLeftChild());      visted(subTree);      InOrder(subTree.getRightChild());    }  }  public void PostOrder(TreeNode subTree) {    //后根    if (subTree != null) {      PostOrder(subTree.getLeftChild());      PostOrder(subTree.getRightChild());      visted(subTree);    }  }  public void LevelOrder(TreeNode subTree) {     //水平遍边  }  public boolean Insert(TreeNode element){    //插入    return true;  }  public boolean Find(TreeNode element){    //查找    return true;  }  public void visted(TreeNode subTree) {    subTree.setVisted(true);    System.out.println("key:" + subTree.getKey() + "--name:"        + subTree.getData());  }  public static void main(String[] args) {    BinaryTree bt = new BinaryTree();    bt.createBinTree(bt.root);    System.out.println("the size of the tree is " + bt.Size());    System.out.println("the height of the tree is " + bt.Height());    System.out.println("*******先根(前序)[ABDECF]遍历*****************");    bt.PreOrder(bt.root);    System.out.println("*******中根(中序)[DBEACF]遍历*****************");    bt.InOrder(bt.root);    System.out.println("*******后根(后序)[DEBFCA]遍历*****************");    bt.PostOrder(bt.root);  }}

 结果输出:
the size of the tree is 6
the height of the tree is 3
*******先根(前序)[ABDECF]遍历*****************
key:1--name:rootNode(A)
key:2--name:B
key:4--name:D
key:5--name:E
key:3--name:C
key:6--name:F
*******中根(中序)[DBEACF]遍历*****************
key:4--name:D
key:2--name:B
key:5--name:E
key:1--name:rootNode(A)
key:3--name:C
key:6--name:F
*******后根(后序)[DEBFCA]遍历*****************
key:4--name:D
key:5--name:E
key:2--name:B
key:6--name:F
key:3--name:C
key:1--name:rootNode(A)

 希望本文对学习JAVA程序设计的同学有所帮助。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表