首页 > 编程 > Java > 正文

Java多线程程序中synchronized修饰方法的使用实例

2019-11-26 14:11:06
字体:
来源:转载
供稿:网友

在Java 5以前,是用synchronized关键字来实现锁的功能。

synchronized关键字可以作为方法的修饰符(同步方法),也可作用于函数内的语句(同步代码块)。

掌握synchronized,关键是要掌握把那个东西作为锁。对于类的非静态方法(成员方法)而言,意味着要取得对象实例的锁;对于类的静态方法(类方法)而言,要取得类的Class对象的锁;对于同步代码块,要指定取得的是哪个对象的锁。同步非静态方法可以视为包含整个方法的synchronized(this) { … }代码块。   

不管是同步代码块还是同步方法,每次只有一个线程可以进入(在同一时刻最多只有一个线程执行该段代码。),如果其他线程试图进入(不管是同一同步块还是不同的同步块),jvm会将它们挂起(放入到等锁池中)。这种结构在并发理论中称为临界区(critical section)。

在jvm内部,为了提高效率,同时运行的每个线程都会有它正在处理的数据的缓存副本,当我们使用synchronzied进行同步的时候,真正被同步的是在不同线程中表示被锁定对象的内存块(副本数据会保持和主内存的同步,现在知道为什么要用同步这个词汇了吧),简单的说就是在同步块或同步方法执行完后,对被锁定的对象做的任何修改要在释放锁之前写回到主内存中;在进入同步块得到锁之后,被锁定对象的数据是从主内存中读出来的,持有锁的线程的数据副本一定和主内存中的数据视图是同步的 。

下面举具体的例子来说明synchronized的各种情况。

synchronized同步方法

首先来看同步方法的例子:

public class SynchronizedTest1 extends Thread {   private synchronized void testSynchronizedMethod()   {     for (int i = 0; i < 10; i++)     {       System.out.println(Thread.currentThread().getName()           + " testSynchronizedMethod:" + i);        try       {         Thread.sleep(100);       }       catch (InterruptedException e)       {         e.printStackTrace();       }     }   }    @Override   public void run()   {     testSynchronizedMethod();   }    public static void main(String[] args)   {          SynchronizedTest1 t = new SynchronizedTest1();     t.start();     t.testSynchronizedMethod();   } } 

运行该程序输出结果为:

main testSynchronizedMethod:0 main testSynchronizedMethod:1 main testSynchronizedMethod:2 main testSynchronizedMethod:3 main testSynchronizedMethod:4 main testSynchronizedMethod:5 main testSynchronizedMethod:6 main testSynchronizedMethod:7 main testSynchronizedMethod:8 main testSynchronizedMethod:9 Thread-0 testSynchronizedMethod:0 Thread-0 testSynchronizedMethod:1 Thread-0 testSynchronizedMethod:2 Thread-0 testSynchronizedMethod:3 Thread-0 testSynchronizedMethod:4 Thread-0 testSynchronizedMethod:5 Thread-0 testSynchronizedMethod:6 Thread-0 testSynchronizedMethod:7 Thread-0 testSynchronizedMethod:8 Thread-0 testSynchronizedMethod:9 

可以看到testSynchronizedMethod方法在两个线程之间同步执行。

如果此时将main方法修改为如下所示,则两个线程并不能同步执行,因为此时两个线程的同步监视器不是同一个对象,不能起到同步的作用。

public static void main(String[] args)   {     Thread t = new SynchronizedTest1();     t.start();          Thread t1 = new SynchronizedTest1();     t1.start();   } 

此时输出结果如下所示:

Thread-0 testSynchronizedMethod:0 Thread-1 testSynchronizedMethod:0 Thread-0 testSynchronizedMethod:1 Thread-1 testSynchronizedMethod:1 Thread-0 testSynchronizedMethod:2 Thread-1 testSynchronizedMethod:2 Thread-0 testSynchronizedMethod:3 Thread-1 testSynchronizedMethod:3 Thread-0 testSynchronizedMethod:4 Thread-1 testSynchronizedMethod:4 Thread-0 testSynchronizedMethod:5 Thread-1 testSynchronizedMethod:5 Thread-0 testSynchronizedMethod:6 Thread-1 testSynchronizedMethod:6 Thread-0 testSynchronizedMethod:7 Thread-1 testSynchronizedMethod:7 Thread-0 testSynchronizedMethod:8 Thread-1 testSynchronizedMethod:8 Thread-0 testSynchronizedMethod:9 Thread-1 testSynchronizedMethod:9 

若想修改后的main方法能够在两个线程之间同步运行,需要将testSynchronizedMethod方法声明为静态方法,这样两个线程的监视器是同一个对象(类对象),能够同步执行。修改后的代码如下所示:

public class SynchronizedTest1 extends Thread {   private static synchronized void testSynchronizedMethod()   {     for (int i = 0; i < 10; i++)     {       System.out.println(Thread.currentThread().getName()           + " testSynchronizedMethod:" + i);        try       {         Thread.sleep(100);       }       catch (InterruptedException e)       {         e.printStackTrace();       }     }   }    @Override   public void run()   {     testSynchronizedMethod();   }    public static void main(String[] args)   {     Thread t = new SynchronizedTest1();     t.start();          Thread t1 = new SynchronizedTest1();     t1.start();   } } 

输出结果如下:

Thread-0 testSynchronizedMethod:0 Thread-0 testSynchronizedMethod:1 Thread-0 testSynchronizedMethod:2 Thread-0 testSynchronizedMethod:3 Thread-0 testSynchronizedMethod:4 Thread-0 testSynchronizedMethod:5 Thread-0 testSynchronizedMethod:6 Thread-0 testSynchronizedMethod:7 Thread-0 testSynchronizedMethod:8 Thread-0 testSynchronizedMethod:9 Thread-1 testSynchronizedMethod:0 Thread-1 testSynchronizedMethod:1 Thread-1 testSynchronizedMethod:2 Thread-1 testSynchronizedMethod:3 Thread-1 testSynchronizedMethod:4 Thread-1 testSynchronizedMethod:5 Thread-1 testSynchronizedMethod:6 Thread-1 testSynchronizedMethod:7 Thread-1 testSynchronizedMethod:8 Thread-1 testSynchronizedMethod:9 

同步块的情况与同步方法类似,只是同步块将同步控制的粒度缩小,这样能够更好的发挥多线程并行执行的效率。
使用this对象控制同一对象实例之间的同步:

public class SynchronizedTest2 extends Thread {   private void testSynchronizedBlock()   {     synchronized (this)     {       for (int i = 0; i < 10; i++)       {         System.out.println(Thread.currentThread().getName()             + " testSynchronizedBlock:" + i);          try         {           Thread.sleep(100);         }         catch (InterruptedException e)         {           e.printStackTrace();         }       }     }   }    @Override   public void run()   {     testSynchronizedBlock();   }    public static void main(String[] args)   {     SynchronizedTest2 t = new SynchronizedTest2();     t.start();      t.testSynchronizedBlock();   } } 

输出结果:

main testSynchronizedBlock:0 main testSynchronizedBlock:1 main testSynchronizedBlock:2 main testSynchronizedBlock:3 main testSynchronizedBlock:4 main testSynchronizedBlock:5 main testSynchronizedBlock:6 main testSynchronizedBlock:7 main testSynchronizedBlock:8 main testSynchronizedBlock:9 Thread-0 testSynchronizedBlock:0 Thread-0 testSynchronizedBlock:1 Thread-0 testSynchronizedBlock:2 Thread-0 testSynchronizedBlock:3 Thread-0 testSynchronizedBlock:4 Thread-0 testSynchronizedBlock:5 Thread-0 testSynchronizedBlock:6 Thread-0 testSynchronizedBlock:7 Thread-0 testSynchronizedBlock:8 Thread-0 testSynchronizedBlock:9 

使用class对象控制不同实例之间的同步:

public class SynchronizedTest2 extends Thread {   private void testSynchronizedBlock()   {     synchronized (SynchronizedTest2.class)     {       for (int i = 0; i < 10; i++)       {         System.out.println(Thread.currentThread().getName()             + " testSynchronizedBlock:" + i);          try         {           Thread.sleep(100);         }         catch (InterruptedException e)         {           e.printStackTrace();         }       }     }   }    @Override   public void run()   {     testSynchronizedBlock();   }    public static void main(String[] args)   {     Thread t = new SynchronizedTest2();     t.start();      Thread t2 = new SynchronizedTest2();     t2.start();   } } 

输出结果:

Thread-0 testSynchronizedBlock:0 Thread-0 testSynchronizedBlock:1 Thread-0 testSynchronizedBlock:2 Thread-0 testSynchronizedBlock:3 Thread-0 testSynchronizedBlock:4 Thread-0 testSynchronizedBlock:5 Thread-0 testSynchronizedBlock:6 Thread-0 testSynchronizedBlock:7 Thread-0 testSynchronizedBlock:8 Thread-0 testSynchronizedBlock:9 Thread-1 testSynchronizedBlock:0 Thread-1 testSynchronizedBlock:1 Thread-1 testSynchronizedBlock:2 Thread-1 testSynchronizedBlock:3 Thread-1 testSynchronizedBlock:4 Thread-1 testSynchronizedBlock:5 Thread-1 testSynchronizedBlock:6 Thread-1 testSynchronizedBlock:7 Thread-1 testSynchronizedBlock:8 Thread-1 testSynchronizedBlock:9 

 
使用synchronized关键字进行同步控制时,一定要把握好对象监视器,只有获得监视器的进程可以运行,其它都需要等待获取监视器。任何一个非null的对象都可以作为对象监视器,当synchronized作用在方法上时,锁住的便是对象实例(this);当作用在静态方法时锁住的便是对象对应的Class实例

两个线程同时访问一个对象的同步方法
当两个并发线程访问同一个对象的同步方法时,只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个以后才能执行。

public class TwoThread {  public static void main(String[] args) {    final TwoThread twoThread = new TwoThread();    Thread t1 = new Thread(new Runnable() {      public void run() {        twoThread.syncMethod();      }    }, "A");    Thread t2 = new Thread(new Runnable() {      public void run() {        twoThread.syncMethod();      }    }, "B");    t1.start();    t2.start();  }  public synchronized void syncMethod() {    for (int i = 0; i < 5; i++) {      System.out.println(Thread.currentThread().getName() + " : " + i);      try {        Thread.sleep(500);      } catch (InterruptedException ie) {      }    }  }}

输出结果:

A : 0A : 1A : 2A : 3A : 4B : 0B : 1B : 2B : 3B : 4

两个线程访问的是两个对象的同步方法
这种情况下,synchronized不起作用,跟普通的方法一样。因为对应的锁是各自的对象。

public class TwoObject {  public static void main(String[] args) {    final TwoObject object1 = new TwoObject();    Thread t1 = new Thread(new Runnable() {      public void run() {        object1.syncMethod();      }    }, "Object1");    t1.start();    final TwoObject object2 = new TwoObject();    Thread t2 = new Thread(new Runnable() {      public void run() {        object2.syncMethod();      }    }, "Object2");    t2.start();  }  public synchronized void syncMethod() {    for (int i = 0; i < 5; i++) {      System.out.println(Thread.currentThread().getName() + " : " + i);      try {        Thread.sleep(500);      } catch (InterruptedException ie) {      }    }  }}

其中一种可能的输出结果:

Object2 : 0Object1 : 0Object1 : 1Object2 : 1Object2 : 2Object1 : 2Object2 : 3Object1 : 3Object1 : 4Object2 : 4

两个线程访问的是synchronized的静态方法
这种情况,由于锁住的是Class,在任何时候,该静态方法只有一个线程可以执行。

同时访问同步方法与非同步方法
当一个线程访问对象的一个同步方法时,另一个线程仍然可以访问该对象中的非同步方法。

public class SyncAndNoSync {  public static void main(String[] args) {    final SyncAndNoSync syncAndNoSync = new SyncAndNoSync();    Thread t1 = new Thread(new Runnable() {      public void run() {        syncAndNoSync.syncMethod();      }    }, "A");    t1.start();    Thread t2 = new Thread(new Runnable() {      public void run() {        syncAndNoSync.noSyncMethod();      }    }, "B");    t2.start();  }  public synchronized void syncMethod() {    for (int i = 0; i < 5; i++) {      System.out.println(Thread.currentThread().getName() + " at syncMethod(): " + i);      try {        Thread.sleep(500);      } catch (InterruptedException ie) {      }    }  }  public void noSyncMethod() {    for (int i = 0; i < 5; i++) {      System.out.println(Thread.currentThread().getName() + " at noSyncMethod(): " + i);      try {        Thread.sleep(500);      } catch (InterruptedException ie) {      }    }  }}

一种可能的输出结果:

B at noSyncMethod(): 0A at syncMethod(): 0B at noSyncMethod(): 1A at syncMethod(): 1B at noSyncMethod(): 2A at syncMethod(): 2B at noSyncMethod(): 3A at syncMethod(): 3A at syncMethod(): 4B at noSyncMethod(): 4

访问同一个对象的不同同步方法
当一个线程访问一个对象的同步方法A时,其他线程对该对象中所有其它同步方法的访问将被阻塞。因为第一个线程已经获得了对象锁,其他线程得不到锁,则虽然是访问不同的方法,但是没有获得锁,也无法访问。

public class TwoSyncMethod {  public static void main(String[] args) {    final TwoSyncMethod twoSyncMethod = new TwoSyncMethod();    Thread t1 = new Thread(new Runnable() {      public void run() {        twoSyncMethod.syncMethod1();      }    }, "A");    t1.start();    Thread t2 = new Thread(new Runnable() {      public void run() {        twoSyncMethod.syncMethod2();      }    }, "B");    t2.start();  }  public synchronized void syncMethod1() {    for (int i = 0; i < 5; i++) {      System.out.println(Thread.currentThread().getName() + " at syncMethod1(): " + i);      try {        Thread.sleep(500);      } catch (InterruptedException ie) {      }    }  }  public synchronized void syncMethod2() {    for (int i = 0; i < 5; i++) {      System.out.println(Thread.currentThread().getName() + " at syncMethod2(): " + i);      try {        Thread.sleep(500);      } catch (InterruptedException ie) {      }    }  }}

输出结果:

A at syncMethod1(): 0A at syncMethod1(): 1A at syncMethod1(): 2A at syncMethod1(): 3A at syncMethod1(): 4B at syncMethod2(): 0B at syncMethod2(): 1B at syncMethod2(): 2B at syncMethod2(): 3B at syncMethod2(): 4

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表