首页 > 编程 > Java > 正文

由ArrayList来深入理解Java中的fail-fast机制

2019-11-26 14:19:57
字体:
来源:转载
供稿:网友

1. fail-fast简介
“快速失败”也就是fail-fast,它是Java集合的一种错误检测机制。某个线程在对collection进行迭代时,不允许其他线程对该collection进行结构上的修改。
例如:假设存在两个线程(线程1、线程2),线程1通过Iterator在遍历集合A中的元素,在某个时候线程2修改了集合A的结构(是结构上面的修改,而不是简单的修改集合元素的内容),那么这个时候程序就会抛出 ConcurrentModificationException 异常,从而产生fail-fast。
迭代器的快速失败行为无法得到保证,它不能保证一定会出现该错误,因此,ConcurrentModificationException应该仅用于检测 bug。
Java.util包中的所有集合类都是快速失败的,而java.util.concurrent包中的集合类都是安全失败的;
快速失败的迭代器抛出ConcurrentModificationException,而安全失败的迭代器从不抛出这个异常。


2 fail-fast示例
示例代码:(FastFailTest.java)

import java.util.*;import java.util.concurrent.*;/* * @desc java集合中Fast-Fail的测试程序。 * * fast-fail事件产生的条件:当多个线程对Collection进行操作时,若其中某一个线程通过iterator去遍历集合时,该集合的内容被其他线程所改变;则会抛出ConcurrentModificationException异常。 * fast-fail解决办法:通过util.concurrent集合包下的相应类去处理,则不会产生fast-fail事件。 * * 本例中,分别测试ArrayList和CopyOnWriteArrayList这两种情况。ArrayList会产生fast-fail事件,而CopyOnWriteArrayList不会产生fast-fail事件。 * (01) 使用ArrayList时,会产生fast-fail事件,抛出ConcurrentModificationException异常;定义如下: *   private static List<String> list = new ArrayList<String>(); * (02) 使用时CopyOnWriteArrayList,不会产生fast-fail事件;定义如下: *   private static List<String> list = new CopyOnWriteArrayList<String>(); * * @author skywang */public class FastFailTest { private static List<String> list = new ArrayList<String>(); //private static List<String> list = new CopyOnWriteArrayList<String>(); public static void main(String[] args) {  // 同时启动两个线程对list进行操作!  new ThreadOne().start();  new ThreadTwo().start(); } private static void printAll() {  System.out.println("");  String value = null;  Iterator iter = list.iterator();  while(iter.hasNext()) {   value = (String)iter.next();   System.out.print(value+", ");  } } /**  * 向list中依次添加0,1,2,3,4,5,每添加一个数之后,就通过printAll()遍历整个list  */ private static class ThreadOne extends Thread {  public void run() {   int i = 0;   while (i<6) {    list.add(String.valueOf(i));    printAll();    i++;   }  } } /**  * 向list中依次添加10,11,12,13,14,15,每添加一个数之后,就通过printAll()遍历整个list  */ private static class ThreadTwo extends Thread {  public void run() {   int i = 10;   while (i<16) {    list.add(String.valueOf(i));    printAll();    i++;   }  } }}

运行结果
运行该代码,抛出异常java.util.ConcurrentModificationException!即,产生fail-fast事件!
结果说明
(01) FastFailTest中通过 new ThreadOne().start() 和 new ThreadTwo().start() 同时启动两个线程去操作list。
ThreadOne线程:向list中依次添加0,1,2,3,4,5。每添加一个数之后,就通过printAll()遍历整个list。
ThreadTwo线程:向list中依次添加10,11,12,13,14,15。每添加一个数之后,就通过printAll()遍历整个list。
(02) 当某一个线程遍历list的过程中,list的内容被另外一个线程所改变了;就会抛出ConcurrentModificationException异常,产生fail-fast事件。

3. fail-fast解决办法
fail-fast机制,是一种错误检测机制。它只能被用来检测错误,因为JDK并不保证fail-fast机制一定会发生。若在多线程环境下使用fail-fast机制的集合,建议使用“java.util.concurrent包下的类”去取代“java.util包下的类”。
所以,本例中只需要将ArrayList替换成java.util.concurrent包下对应的类即可。 即,将代码
private static List<String> list = new ArrayList<String>();
替换为
private static List<String> list = new CopyOnWriteArrayList<String>();
则可以解决该办法。

4. fail-fast原理
产生fail-fast事件,是通过抛出ConcurrentModificationException异常来触发的。
那么,ArrayList是如何抛出ConcurrentModificationException异常的呢?
我们知道,ConcurrentModificationException是在操作Iterator时抛出的异常。我们先看看Iterator的源码。ArrayList的Iterator是在父类AbstractList.java中实现的。代码如下:
package java.util;

public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> { ... // AbstractList中唯一的属性 // 用来记录List修改的次数:每修改一次(添加/删除等操作),将modCount+1 protected transient int modCount = 0; // 返回List对应迭代器。实际上,是返回Itr对象。 public Iterator<E> iterator() {  return new Itr(); } // Itr是Iterator(迭代器)的实现类 private class Itr implements Iterator<E> {  int cursor = 0;  int lastRet = -1;  // 修改数的记录值。  // 每次新建Itr()对象时,都会保存新建该对象时对应的modCount;  // 以后每次遍历List中的元素的时候,都会比较expectedModCount和modCount是否相等;  // 若不相等,则抛出ConcurrentModificationException异常,产生fail-fast事件。  int expectedModCount = modCount;  public boolean hasNext() {   return cursor != size();  }  public E next() {   // 获取下一个元素之前,都会判断“新建Itr对象时保存的modCount”和“当前的modCount”是否相等;   // 若不相等,则抛出ConcurrentModificationException异常,产生fail-fast事件。   checkForComodification();   try {    E next = get(cursor);    lastRet = cursor++;    return next;   } catch (IndexOutOfBoundsException e) {    checkForComodification();    throw new NoSuchElementException();   }  }  public void remove() {   if (lastRet == -1)    throw new IllegalStateException();   checkForComodification();   try {    AbstractList.this.remove(lastRet);    if (lastRet < cursor)     cursor--;    lastRet = -1;    expectedModCount = modCount;   } catch (IndexOutOfBoundsException e) {    throw new ConcurrentModificationException();   }  }  final void checkForComodification() {   if (modCount != expectedModCount)    throw new ConcurrentModificationException();  } } ...}

从中,我们可以发现在调用 next() 和 remove()时,都会执行 checkForComodification()。若 “modCount 不等于 expectedModCount”,则抛出ConcurrentModificationException异常,产生fail-fast事件。
要搞明白 fail-fast机制,我们就要需要理解什么时候“modCount 不等于 expectedModCount”!
从Itr类中,我们知道 expectedModCount 在创建Itr对象时,被赋值为 modCount。通过Itr,我们知道:expectedModCount不可能被修改为不等于 modCount。所以,需要考证的就是modCount何时会被修改。
接下来,我们查看ArrayList的源码,来看看modCount是如何被修改的。

package java.util;public class ArrayList<E> extends AbstractList<E>  implements List<E>, RandomAccess, Cloneable, java.io.Serializable{ ... // list中容量变化时,对应的同步函数 public void ensureCapacity(int minCapacity) {  modCount++;  int oldCapacity = elementData.length;  if (minCapacity > oldCapacity) {   Object oldData[] = elementData;   int newCapacity = (oldCapacity * 3)/2 + 1;   if (newCapacity < minCapacity)    newCapacity = minCapacity;   // minCapacity is usually close to size, so this is a win:   elementData = Arrays.copyOf(elementData, newCapacity);  } } // 添加元素到队列最后 public boolean add(E e) {  // 修改modCount  ensureCapacity(size + 1); // Increments modCount!!  elementData[size++] = e;  return true; } // 添加元素到指定的位置 public void add(int index, E element) {  if (index > size || index < 0)   throw new IndexOutOfBoundsException(   "Index: "+index+", Size: "+size);  // 修改modCount  ensureCapacity(size+1); // Increments modCount!!  System.arraycopy(elementData, index, elementData, index + 1,    size - index);  elementData[index] = element;  size++; } // 添加集合 public boolean addAll(Collection<? extends E> c) {  Object[] a = c.toArray();  int numNew = a.length;  // 修改modCount  ensureCapacity(size + numNew); // Increments modCount  System.arraycopy(a, 0, elementData, size, numNew);  size += numNew;  return numNew != 0; } // 删除指定位置的元素  public E remove(int index) {  RangeCheck(index);  // 修改modCount  modCount++;  E oldValue = (E) elementData[index];  int numMoved = size - index - 1;  if (numMoved > 0)   System.arraycopy(elementData, index+1, elementData, index, numMoved);  elementData[--size] = null; // Let gc do its work  return oldValue; } // 快速删除指定位置的元素  private void fastRemove(int index) {  // 修改modCount  modCount++;  int numMoved = size - index - 1;  if (numMoved > 0)   System.arraycopy(elementData, index+1, elementData, index,        numMoved);  elementData[--size] = null; // Let gc do its work } // 清空集合 public void clear() {  // 修改modCount  modCount++;  // Let gc do its work  for (int i = 0; i < size; i++)   elementData[i] = null;  size = 0; } ...}

从中,我们发现:无论是add()、remove(),还是clear(),只要涉及到修改集合中的元素个数时,都会改变modCount的值。
接下来,我们再系统的梳理一下fail-fast是怎么产生的。步骤如下:
(01) 新建了一个ArrayList,名称为arrayList。
(02) 向arrayList中添加内容。
(03) 新建一个“线程a”,并在“线程a”中通过Iterator反复的读取arrayList的值。
(04) 新建一个“线程b”,在“线程b”中删除arrayList中的一个“节点A”。
(05) 这时,就会产生有趣的事件了。
在某一时刻,“线程a”创建了arrayList的Iterator。此时“节点A”仍然存在于arrayList中,创建arrayList时,expectedModCount = modCount(假设它们此时的值为N)。
在“线程a”在遍历arrayList过程中的某一时刻,“线程b”执行了,并且“线程b”删除了arrayList中的“节点A”。“线程b”执行remove()进行删除操作时,在remove()中执行了“modCount++”,此时modCount变成了N+1!
“线程a”接着遍历,当它执行到next()函数时,调用checkForComodification()比较“expectedModCount”和“modCount”的大小;而“expectedModCount=N”,“modCount=N+1”,这样,便抛出ConcurrentModificationException异常,产生fail-fast事件。
至此,我们就完全了解了fail-fast是如何产生的!
即,当多个线程对同一个集合进行操作的时候,某线程访问集合的过程中,该集合的内容被其他线程所改变(即其它线程通过add、remove、clear等方法,改变了modCount的值);这时,就会抛出ConcurrentModificationException异常,产生fail-fast事件。

5. 解决fail-fast的原理
上面,说明了“解决fail-fast机制的办法”,也知道了“fail-fast产生的根本原因”。接下来,我们再进一步谈谈java.util.concurrent包中是如何解决fail-fast事件的。
还是以和ArrayList对应的CopyOnWriteArrayList进行说明。我们先看看CopyOnWriteArrayList的源码:

package java.util.concurrent;import java.util.*;import java.util.concurrent.locks.*;import sun.misc.Unsafe;public class CopyOnWriteArrayList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { ... // 返回集合对应的迭代器 public Iterator<E> iterator() {  return new集合类中的fast-fail实现方式都差不多,我们以最简单的ArrayList为例吧。protected transient int modCount = 0;记录的是我们对ArrayList修改的次数,比如我们调用 add(),remove()等改变数据的操作时,会将modCount++。protected transient int modCount = 0;记录的是我们对ArrayList修改的次数,比如我们调用 add(),remove()等改变数据的操作时,会将modCount++。 COWIterator<E>(getArray(), 0); } ... private static class COWIterator<E> implements ListIterator<E> {  private final Object[] snapshot;  private int cursor;  private COWIterator(Object[] elements, int initialCursor) {   cursor = initialCursor;   // 新建COWIterator时,将集合中的元素保存到一个新的拷贝数组中。   // 这样,当原始集合的数据改变,拷贝数据中的值也不会变化。   snapshot = elements;  }  public boolean hasNext() {   return cursor < snapshot.length;  }  public boolean hasPrevious() {   return cursor > 0;  }  public E next() {   if (! hasNext())    throw new NoSuchElementException();   return (E) snapshot[cursor++];  }  public E previous() {   if (! hasPrevious())    throw new NoSuchElementException();   return (E) snapshot[--cursor];  }  public int nextIndex() {   return cursor;  }  public int previousIndex() {   return cursor-1;  }  public void remove() {   throw new UnsupportedOperationException();  }  public void set(E e) {   throw new UnsupportedOperationException();  }  public void add(E e) {   throw new UnsupportedOperationException();  } } ...}

从中,我们可以看出:
(01) 和ArrayList继承于AbstractList不同,CopyOnWriteArrayList没有继承于AbstractList,它仅仅只是实现了List接口。
(02) ArrayList的iterator()函数返回的Iterator是在AbstractList中实现的;而CopyOnWriteArrayList是自己实现Iterator。
(03) ArrayList的Iterator实现类中调用next()时,会“调用checkForComodification()比较‘expectedModCount'和‘modCount'的大小”;但是,CopyOnWriteArrayList的Iterator实现类中,没有所谓的checkForComodification(),更不会抛出ConcurrentModificationException异常!

6. 总结
由于HashMap(ArrayList)并不是线程安全的,因此如果在使用迭代器的过程中有其他线程修改了map(这里的修改是指结构上的修改,并非指单纯修改集合内容的元素),那么将要抛出ConcurrentModificationException 即为fail-fast策略   
主要通过modCount域来实现,保证线程之间的可见性,modCount即为修改次数,对于HashMap(ArrayList)内容的修改就会增加这个值, 那么在迭代器的初始化过程中就会将这个值赋值给迭代器的expectedModCount
但是fail-fast行为并不能保证,因此依赖于此异常的程序的做法是错误的

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表