构成子空间W2j的正交标准基,而它们的伸缩平移系(简写)为:
是L2(R2)的一个标准正交基。在本系统中,通过与计算机相连的手写板及电子笔将签名采集到计算机并显示在屏幕上。采集并输入到计算机中的图像是二维,本文中设要分解的图像为f (x,y)ΕL2(R2)。为方便,设L2(R2)-V2N,即令fN是f在V2N的正交投影。这样关于f的有限小波分解就是对fN的分解。由于:
假定{V2j}jez上的尺度函数Φj,Φj(x,y)=2jΦ(2jx,2jy)为二维MAR{V2j}jez的尺度函数,小波函数ψ(α)j, α=1,2,3已分别由式(1)和式(2)给出,并由阵列{CNk1,k2},(k1,k1ΕZ2),使得:
其中,Cn,k1,k2=<fN,N,k1,k2>同样,有:
式中(6),j=N-1,Λ,N-M。fj是fN在f2j上的低通滤波信号,而gαj, α=1,2,3是fN在W2j上的三个高通滤波细节。再设有限长序列{Pk1}、{Pk2}分别是平面(x,y)上x方向与y方向的高通滤波系数,{gk1}与{gk2}分别是x方向与y方向的低通滤波系数,则由式(6)得到:
上式中箭头右部分是左部分的矩阵表示,其中CN是原始信号f(x,y)的分布阵列,PR、Pc是分别对CN的行与列作低通滤波的算子,而Qr、Qc是分别对CN的行与列作高通滤波的算子。而进一步地第j次分解应为:
式(7)中,j=N-2, Λ,N-M。式(7)便是二维信号fN或CN的有限正交小波分解的Mallat塔式算法[5]。通过实验,选用Daubechies 8小波能达到较好的分解效果。对采集进入计算机的真实签名与伪造签名进行小波分解,限于遍幅,本文只给出了真实签名的一次分解图,如图书1所示。通常在实验中,借助Matlab6.5将真假签名的字符图像通过两个互补滤波器即低通滤波器和高通滤波器分别得到图像的相似和细节部分。相似子图主要是原始图像的全局、低频成分,而细节子图通常是原始图像的局部、高频成分。细节子图又包括水平子图、斜向子图和垂直子图三部分。其中细节子图经过两次滤波:水平方向答应低频分量通过,而沿垂直方向答应高频分量通过。这对横向笔划(灰度变化沿水平方向为低频,沿垂直方向为高频)是增强,而对竖笔划(灰度变化沿水平方向为高频,沿垂直方向为低频)是平滑。垂直方向和斜方向的像素按同样的道理分别在垂直子图和斜子图中被突出表示。这种方向选择性与人眼视觉特性相吻合,使建立在此基础上的特征提以算法具有类视觉特性。
。设f(x,y)为二值图像函数,由线性系统中卷积和微分的可交换性,得??2{G(x,y)хI(x,y)}={ ??2G (x,y)} хI(x,y),即:对图像的高斯平滑滤波与拉普拉斯微分运算可结合成一个卷积子如下:
用上述算子卷积图像,通过判定符号的变化确定出零交叉点的位置,就是边缘点。对小波一次分解后的真实签名的处理结果如图2所示。通过图2可以看出,Marr零交叉边缘算子同时提取了强、弱边缘,并且边缘相对干净,噪声干扰少,连续性好。3 基于判别熵最小化的特征提取不同的类样本占有不同的特征空间的区域,只要这些区域不相交叠,它们就可以分开。经常用样本间的平均距离作为特征提取的判据函数。重要的距离有Minkowski度量ΔM、欧氏距离δE、Chebychev距离δr、平方距离δQ和非线性度量δN等。在不考虑各类的概率分布时,不能确切地表达各类的交叠状况,且不能直接表达错误率。为此,应考虑概率距离,利用不确定性最小的分征进行分类是最有利的,故可用熵来度量后验证概率分布的集中程序。某此概率分布密度偏离给定标准分布的程度的度量,叫相对熵。本文假定经小波和Marr算子处理后的图像函数?(xi,yj)的概率分布为P(xi,yj),给定标准分布ω(xi,yj),则两者之间的相对熵为:求和应在该特征所有可能的取值上进行。相对熵越小,这两类概率分布的差别就越大,当两类概率分别完全相同时,相对熵达最大值(等于零)。因此可以定义判别熵W(p,q)来表征两类分布p(xi,yj)和q(xi,yi)的差别大小。
在多类情况下,可以用ΣnΣmW(p(n),q(m))表示各类分布之间的分离程度。这里n,m代表类别号。对特征提取来说,在给定维数d的条件下,求得这样d个特征,它使上述判别熵最小。为了计算方便,本文用下列函数-U(p,q)= ΣiΣj(pi,j-qij)2≤0代替W(p,q),而不影响选取d个最优特征的结果。在不对概率分布作估计的情况下,可以用经过归一化处理的样本特征值代替上式中的概率分布。
K是第一类样本集中的样本号,N1是第一类的样本总数,i是特征号。由于
,这样做是合理的。而U取最小值的坐标系统工程是由矩阵A=G(1)-G(2)满足一定条件的d个本征值相应的本征向量组成的。这里G(1)和G(2)分别是第一类样本集和第二类本集的协方差矩阵。即将矩阵A的本征向量uk对应的本征值λk,k=1,2,ΛD排队:
选取本征值对应的本征向量为所要求的坐标轴系统,在这个坐标系统中判别熵最小。在实验中选取Shannon熵。表1和表2分别列出了真实签名和伪造签名分解后的各尺度图像的最小判别熵。由表1和表2的计算数据可以看出,通过小波一次分解后的最小判别熵的数据可以很明显地对真假签名进行鉴别。并且,相似图形与细节图形的最小判别熵相差甚远,区别较大;而细节图形中的水平子图、斜向子图和垂直子图三部分的最小判别熵却相差较小。因此,这样提取的特征向量稳定性好、区别性大、正确性高。新闻热点
疑难解答