本文实例讲述了Python实现PS滤镜特效Marble Filter玻璃条纹扭曲效果。分享给大家供大家参考,具体如下:
这里用 Python 实现 PS 滤镜特效,Marble Filter, 这种滤镜使图像产生不规则的扭曲,看起来像某种玻璃条纹, 具体的代码如下:
import numpy as npimport mathimport numpy.matlibfrom skimage import ioimport randomfrom skimage import img_as_floatimport matplotlib.pyplot as pltdef Init_arr(): B = 256 P = np.zeros((B+B+2, 1)) g1 = np.zeros((B+B+2, 1)) g2 = np.zeros((B+B+2, 2)) g3 = np.zeros((B+B+2, 3)) N_max = 1e6 for i in range(B+1): P[i] = i g1[i] = (((math.floor(random.random()*N_max)) % (2*B))-B)*1.0/B g2[i, :] = (np.mod((np.floor(np.random.rand(1, 2)*N_max)), (2*B))-B)*1.0/B g2[i, :] = g2[i, :] / np.sum(g2[i, :] **2) g3[i, :] = (np.mod((np.floor(np.random.rand(1, 3)*N_max)), (2*B))-B)*1.0/B g3[i, :] = g3[i, :] / np.sum(g3[i, :] **2) for i in range(B, -1, -1): k = P[i] j = math.floor(random.random()*N_max) % B P [i] = P [j] P [j] = k P[B+1:2*B+2]=P[0:B+1]; g1[B+1:2*B+2]=g1[0:B+1]; g2[B+1:2*B+2, :]=g2[0:B+1, :] g3[B+1:2*B+2, :]=g3[0:B+1, :] P = P.astype(int) return P, g1, g2, g3def Noise_2(x_val, y_val, P, g2): BM=255 N=4096 t = x_val + N bx0 = ((np.floor(t).astype(int)) & BM) + 1 bx1 = ((bx0 + 1).astype(int) & BM) + 1 rx0 = t - np.floor(t) rx1 = rx0 - 1.0 t = y_val + N by0 = ((np.floor(t).astype(int)) & BM) + 1 by1 = ((bx0 + 1).astype(int) & BM) + 1 ry0 = t - np.floor(t) ry1 = rx0 - 1.0 sx = rx0 * rx0 * (3 - 2.0 * rx0) sy = ry0 * ry0 * (3 - 2.0 * ry0) row, col = x_val.shape q1 = np.zeros((row, col ,2)) q2 = q1.copy() q3 = q1.copy() q4 = q1.copy() for i in range(row): for j in range(col): ind_i = P[bx0[i, j]] ind_j = P[bx1[i, j]] b00 = P[ind_i + by0[i, j]] b01 = P[ind_i + by1[i, j]] b10 = P[ind_j + by0[i, j]] b11 = P[ind_j + by1[i, j]] q1[i, j, :] = g2[b00, :] q2[i, j, :] = g2[b10, :] q3[i, j, :] = g2[b01, :] q4[i, j, :] = g2[b11, :] u1 = rx0 * q1[:, :, 0] + ry0 * q1[:, :, 1] v1 = rx1 * q2[:, :, 0] + ry1 * q2[:, :, 1] a = u1 + sx * (v1 - u1) u2 = rx0 * q3[:, :, 0] + ry0 * q3[:, :, 1] v2 = rx1 * q4[:, :, 0] + ry1 * q4[:, :, 1] b = u2 + sx * (v2 - u2) out = (a + sy * (b - a)) * 1.5 return outfile_name='D:/Visual Effects/PS Algorithm/4.jpg';img=io.imread(file_name)img = img_as_float(img)row, col, channel = img.shapexScale = 25.0yScale = 25.0turbulence =0.25xx = np.arange (col)yy = np.arange (row)x_mask = numpy.matlib.repmat (xx, row, 1)y_mask = numpy.matlib.repmat (yy, col, 1)y_mask = np.transpose(y_mask)x_val = x_mask / xScaley_val = y_mask / yScaleIndex = np.arange(256)sin_T=-yScale*np.sin(2*math.pi*(Index)/255*turbulence);cos_T=xScale*np.cos(2*math.pi*(Index)/255*turbulence)P, g1, g2, g3 = Init_arr()Noise_out = Noise_2(x_val, y_val, P, g2)Noise_out = 127 * (Noise_out + 1)Dis = np.floor(Noise_out)Dis[Dis>255] = 255Dis[Dis<0] = 0Dis = Dis.astype(int)img_out = img.copy()for ii in range(row): for jj in range(col): new_x = jj + sin_T[Dis[ii, jj]] new_y = ii + cos_T[Dis[ii, jj]] if (new_x > 0 and new_x < col-1 and new_y > 0 and new_y < row-1): int_x = int(new_x) int_y = int(new_y) img_out[ii, jj, :] = img[int_y, int_x, :]plt.figure(1)plt.title('www.jb51.net')plt.imshow(img)plt.axis('off');plt.figure(2)plt.title('www.jb51.net')plt.imshow(img_out)plt.axis('off');plt.show();
新闻热点
疑难解答