本文研究的主要是pandas常用函数,具体介绍如下。
import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport datetimeimport re
df = pd.read_csv(path='file.csv')
参数:header=None 用默认列名,0,1,2,3...
names=['A', 'B', 'C'...] 自定义列名
index_col='A'|['A', 'B'...] 给索引列指定名称,如果是多重索引,可以传list
skiprows=[0,1,2] 需要跳过的行号,从文件头0开始,skip_footer从文件尾开始
nrows=N 需要读取的行数,前N行
chunksize=M 返回迭代类型TextFileReader,每M条迭代一次,数据占用较大内存时使用
sep=':'数据分隔默认是',',根据文件选择合适的分隔符,如果不指定参数,会自动解析
skip_blank_lines=False 默认为True,跳过空行,如果选择不跳过,会填充NaN
converters={'col1', func} 对选定列使用函数func转换,通常表示编号的列会使用(避免转换成int)dfjs = pd.read_json('file.json') 可以传入json格式字符串
dfex = pd.read_excel('file.xls', sheetname=[0,1..]) 读取多个sheet页,返回多个df的字典
df.duplicated() 返回各行是否是上一行的重复行
df.drop_duplicates() 删除重复行,如果需要按照列过滤,参数选填['col1', 'col2',...]
df.fillna(0) 用实数0填充na
df.dropna() axis=0|1 0-index 1-column
how='all'|'any' all-全部是NA才删 any-只要有NA就全删
del df['col1'] 直接删除某一列
df.drop(['col1',...], aixs=1) 删除指定列,也可以删除行
df.column = col_lst 重新制定列名
df.rename(index={'row1':'A'}, 重命名索引名和列名
columns={'col1':'A1'})
df.replace(dict) 替换df值,前后值可以用字典表,{1:‘A', '2':'B'}
def get_digits(str):
m = re.match(r'(/d+(/./d+)?)', str.decode('utf-8'))
if m is not None:
return float(m.groups()[0])
else:
return 0
df.apply(get_digits) DataFrame.apply,只获取小数部分,可以选定某一列或行
df['col1'].map(func) Series.map,只对列进行函数转换
pd.merge(df1, df2, on='col1',
how='inner',sort=True) 合并两个DataFrame,按照共有的某列做内连接(交集),outter为外连接(并集),结果排序
pd.merge(df1, df2, left_on='col1',
right_on='col2') df1 df2没有公共列名,所以合并需指定两边的参考列
pd.concat([sr1, sr2, sr3,...], axis=0) 多个Series堆叠成多行,结果仍然是一个Series
pd.concat([sr1, sr2, sr3,...], axis=1) 多个Series组合成多行多列,结果是一个DataFrame,索引取并集,没有交集的位置填入缺省值NaN
df1.combine_first(df2) 用df2的数据补充df1的缺省值NaN,如果df2有更多行,也一并补上
新闻热点
疑难解答