首页 > 编程 > Python > 正文

TensorFlow模型保存/载入的两种方法

2020-02-22 23:23:20
字体:
来源:转载
供稿:网友

TensorFlow 模型保存/载入

我们在上线使用一个算法模型的时候,首先必须将已经训练好的模型保存下来。tensorflow保存模型的方式与sklearn不太一样,sklearn很直接,一个sklearn.externals.joblib的dump与load方法就可以保存与载入使用。而tensorflow由于有graph, operation 这些概念,保存与载入模型稍显麻烦。

一、基本方法

网上搜索tensorflow模型保存,搜到的大多是基本的方法。即

保存

定义变量 使用saver.save()方法保存

载入

定义变量 使用saver.restore()方法载入

如 保存 代码如下

import tensorflow as tf import numpy as np W = tf.Variable([[1,1,1],[2,2,2]],dtype = tf.float32,name='w') b = tf.Variable([[0,1,2]],dtype = tf.float32,name='b') init = tf.initialize_all_variables() saver = tf.train.Saver() with tf.Session() as sess:   sess.run(init)   save_path = saver.save(sess,"save/model.ckpt") 

载入代码如下

import tensorflow as tf import numpy as np W = tf.Variable(tf.truncated_normal(shape=(2,3)),dtype = tf.float32,name='w') b = tf.Variable(tf.truncated_normal(shape=(1,3)),dtype = tf.float32,name='b') saver = tf.train.Saver() with tf.Session() as sess:   saver.restore(sess,"save/model.ckpt") 

这种方法不方便的在于,在使用模型的时候,必须把模型的结构重新定义一遍,然后载入对应名字的变量的值。但是很多时候我们都更希望能够读取一个文件然后就直接使用模型,而不是还要把模型重新定义一遍。所以就需要使用另一种方法。

二、不需重新定义网络结构的方法

tf.train.import_meta_graphimport_meta_graph( meta_graph_or_file, clear_devices=False, import_scope=None, **kwargs)

这个方法可以从文件中将保存的graph的所有节点加载到当前的default graph中,并返回一个saver。也就是说,我们在保存的时候,除了将变量的值保存下来,其实还有将对应graph中的各种节点保存下来,所以模型的结构也同样被保存下来了。

比如我们想要保存计算最后预测结果的y,则应该在训练阶段将它添加到collection中。具体代码如下

保存

### 定义模型input_x = tf.placeholder(tf.float32, shape=(None, in_dim), name='input_x')input_y = tf.placeholder(tf.float32, shape=(None, out_dim), name='input_y')w1 = tf.Variable(tf.truncated_normal([in_dim, h1_dim], stddev=0.1), name='w1')b1 = tf.Variable(tf.zeros([h1_dim]), name='b1')w2 = tf.Variable(tf.zeros([h1_dim, out_dim]), name='w2')b2 = tf.Variable(tf.zeros([out_dim]), name='b2')keep_prob = tf.placeholder(tf.float32, name='keep_prob')hidden1 = tf.nn.relu(tf.matmul(self.input_x, w1) + b1)hidden1_drop = tf.nn.dropout(hidden1, self.keep_prob)### 定义预测目标y = tf.nn.softmax(tf.matmul(hidden1_drop, w2) + b2)# 创建saversaver = tf.train.Saver(...variables...)# 假如需要保存y,以便在预测时使用tf.add_to_collection('pred_network', y)sess = tf.Session()for step in xrange(1000000): sess.run(train_op) if step % 1000 == 0:  # 保存checkpoint, 同时也默认导出一个meta_graph  # graph名为'my-model-{global_step}.meta'.  saver.save(sess, 'my-model', global_step=step)            
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表