首页 > 编程 > Python > 正文

python机器学习之贝叶斯分类

2020-02-22 23:33:36
字体:
来源:转载
供稿:网友

一、贝叶斯分类介绍

贝叶斯分类器是一个统计分类器。它们能够预测类别所属的概率,如:一个数据对象属于某个类别的概率。贝叶斯分类器是基于贝叶斯定理而构造出来的。对分类方法进行比较的有关研究结果表明:简单贝叶斯分类器(称为基本贝叶斯分类器)在分类性能上与决策树和神经网络都是可比的。在处理大规模数据库时,贝叶斯分类器已表现出较高的分类准确性和运算性能。基本贝叶斯分类器假设一个指定类别中各属性的取值是相互独立的。这一假设也被称为:类别条件独立,它可以帮助有效减少在构造贝叶斯分类器时所需要进行的计算。

二、贝叶斯定理

p(A|B) 条件概率 表示在B发生的前提下,A发生的概率;

 

基本贝叶斯分类器通常都假设各类别是相互独立的,即各属性的取值是相互独立的。对于特定的类别且其各属性相互独立,就会有:

 P(AB|C) = P(A|C)*P(B|C)

三、贝叶斯分类案例

1.分类属性是离散

假设有样本数为6个的训练集数字如下:

现在假设来又来了一个人是症状为咳嗽的教师,那这位教师是患上感冒、发烧、鼻炎的概率分别是多少呢?这个问题可以用贝叶斯分类来解决,最后三个疾病哪个概率高,就把这个咳嗽的教师划为哪个类,实质就是分别求p(感冒|咳嗽*教师)和P(发烧 | 咳嗽 * 教师)

P(鼻炎 | 咳嗽 * 教师) 的概率;

假设各个类别相互独立:

 

 P(感冒)=3/6    P(发烧)=1/6     P(鼻炎)=2/6

 p(咳嗽) = 3/6   P(教师)= 2/6

 p(咳嗽 | 感冒) = 2/3   P(教师 | 感冒) = 1/3

按以上方法可分别求  P(发烧 | 咳嗽 × 教师) 和P(鼻炎 |咳嗽 × 教师 )的概率;

2.分类属性连续

如果按上面的样本上加一个年龄的属性;因为年龄是连续,不能采用离散变量的方法计算概率。而且由于样本太少,所以也无法分成区间计算;这时,可以假设感冒、发烧、鼻炎分类的年龄都是正态分布,通过样本计算出均值和方差,也就是得到正态分布的密度函数;

下面就以求P(年龄=15|感冒)下的概率为例说明:

   第一:求在感冒类下的年龄平均值  u=(15+48+12)/3=25

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表