跟朋友最近聊起来数独游戏,突发奇想使用python编写一个自动计算数独解的小程序。
数独的规则不再过多阐述,在此描述一下程序的主要思路:
(当前程序只针对于简单的数独,更复杂的还待深入挖掘)
1.计算当前每个空格可能的取值集合,并将空格顺序值对应取值集合置于字典中;
2.对取值集合位数为1,即空格处为单一取值的进行赋值,(填入动作),重复1刷新字典直到字典为空位置;
当前实现如下:
1.将数独输入列表中,并定义函数count_candinate_number(j)根据数独规则计算每一个为0的位置的当前可能取值:
#编辑数独题目,将题目输入列表中question = [6,0,7,0,0,0,9,0,3, 0,0,8,0,0,7,0,0,0, 3,0,0,0,8,2,0,7,5, 0,1,2,3,0,5,0,0,0, 0,0,6,0,0,0,5,0,0, 0,0,0,4,0,6,7,1,0, 2,6,0,7,4,0,0,0,8, 0,0,0,8,0,0,6,0,0, 7,0,5,0,0,0,1,0,9] # print(question[0]) #返回当前数独为0的空格中所有可能取值def count_candidate_number(j): exist_all_number = [] #当前横竖大方格内所有出现的数字集 candidate_number = [] #该方格内所有的数字候选集 SD_Row = int(j) // 9 #行 SD_Column = int(j) % 9 #列 #用迭代器写 exist_all_number_part1 = [question[i+SD_Row*9] for i in range(9)] #横-出现的所有数字集 exist_all_number_part2 = [question[i*9+SD_Column] for i in range(9)] #竖-出现的所有数字集 exist_all_number_part3 = [question[((j//9)//3)*27+((j % 9)//3)*3+i] for i in range(3)]+[question[((j//9)//3)*27+((j % 9)//3)*3+9+i] for i in range(3)]+[question[((j//9)//3)*27+((j % 9)//3)*3+18+i] for i in range(3)] #大方块-出现的所有数字集 exist_all_number = list(set(exist_all_number_part1+exist_all_number_part2+exist_all_number_part3)) #对出现所有的数字集组合及去重 # print(exist_all_number) #用循环写 # for i in range(9): # if question[i+SD_Row*9] not in exist_all_number: # exist_all_number.append(question[i+SD_Row*9]) # if question[i*9 + SD_Cloumn] not in exist_all_number: # exist_all_number.append(question[i*9 + SD_Cloumn]) # # print(exist_all_number) #迭代器写 candidate_number = [i for i in range(1, 10) if i not in exist_all_number] #对可能取值进行迭代输出 #用循环写 # for i in range(1,10): # if i not in exist_all_number: # candidate_number.append(i) # print(candidate_number) return candidate_number
2.定义函数求解对应每个为0的位置的可能求解,并将位置信息与可能求解以键-键值的形式存储于字典中:
#对数组中每个为0的空格列出所有可能的取值数集,并放置于字典中def all_possible_candidate_number(): all_possible_candidate_number = {i:count_candidate_number(i) for i in range(81) if question[i] == 0} return all_possible_candidate_number # print(all_possible_candidate_number)
3.对每一个位置的可能求解进行判断,若可能解只有一个,则填入该解,循环直至数独求解完成
新闻热点
疑难解答