前言
大家应该都知道在编程语言中,定时任务是常用的一种调度形式,在Python中也涌现了非常多的调度模块,本文将简要介绍APScheduler的基本使用方法。
一、APScheduler介绍
APScheduler是基于Quartz的一个python定时任务框架,实现了Quartz的所有功能,使用起来十分方便。提供了基于日期、固定时间间隔以及crontab类型的任务,并且可以持久化任务。
APScheduler提供了多种不同的调度器,方便开发者根据自己的实际需要进行使用;同时也提供了不同的存储机制,可以方便与Redis,数据库等第三方的外部持久化机制进行协同工作,总之功能非常强大和易用。
在Python的世界中,另外一个齐名的调度模块是Celery,功能也非常的强大,号称分布式的调度器,感兴趣的读者可以自行进行研究。
官网文档地址:http://apscheduler.readthedocs.io/en/latest/
安装包位置: https://pypi.python.org/pypi/APScheduler/
在系统中,如何进行安装呢?其实非常简单,基于pip直接安装即可:
pip install APScheduler
二、APScheduler的主要的调度类
在APScheduler中有以下几个非常重要的概念,需要大家理解:
1、触发器(trigger)
包含调度逻辑,每一个作业有它自己的触发器,用于决定接下来哪一个作业会运行,根据trigger中定义的时间点,频率,时间区间等等参数设置。除了他们自己初始配置以外,触发器完全是无状态的。
2、作业存储(job store)
存储被调度的作业,默认的作业存储是简单地把作业保存在内存中,其他的作业存储是将作业保存在数据库中。一个作业的数据讲在保存在持久化作业存储时被序列化,并在加载时被反序列化。调度器不能分享同一个作业存储。job store支持主流的存储机制:redis, mongodb, 关系型数据库, 内存等等
3、执行器(executor)
处理作业的运行,他们通常通过在作业中提交制定的可调用对象到一个线程或者进城池来进行。当作业完成时,执行器将会通知调度器。基于池化的操作,可以针对不同类型的作业任务,更为高效地使用cpu的计算资源。
调度器(scheduler)
通常在应用只有一个调度器,调度器提供了处理这些的合适的接口。配置作业存储和执行器可以在调度器中完成,例如添加、修改和移除作业。
这里简单列一下常用的若干调度器:
BlockingScheduler:仅可用在当前你的进程之内,与当前的进行共享计算资源 BackgroundScheduler: 在后台运行调度,不影响当前的系统计算运行 AsyncIOScheduler: 如果当前系统中使用了async module,则需要使用异步的调度器 GeventScheduler: 如果使用了gevent,则需要使用该调度 TornadoScheduler: 如果使用了Tornado, 则使用当前的调度器 TwistedScheduler:Twister应用的调度器 QtScheduler: Qt的调度器新闻热点
疑难解答