本文实例讲述了Python分治法定义与应用。分享给大家供大家参考,具体如下:
分治法所能解决的问题一般具有以下几个特征:
1) 该问题的规模缩小到一定的程度就可以容易地解决
2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3) 利用该问题分解出的子问题的解可以合并为该问题的解;
4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;
第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;
第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。
第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
题目1. 给定一个顺序表,编写一个求出其最大值的分治算法。
# 基本子算法(子问题规模小于等于 2 时)def get_max(max_list): return max(max_list) # 这里偷个懒!# 分治法 版本一def solve(init_list): n = len(init_list) if n <= 2: # 若问题规模小于等于 2,最终解决 return get_max(init_list) # 分解(子问题规模为 2,最后一个可能为 1) temp_list=(init_list[i:i+2] for i in range(0, n, 2)) # 分治,合并 max_list = list(map(get_max, temp_list)) # 递归(树) solve(max_list)# 分治法 版本二def solve2(init_list): n = len(init_list) if n <= 2: # 若问题规模小于等于 2,解决 return get_max(init_list) # 分解(子问题规模为 n/2) left_list, right_list = init_list[:n//2], init_list[n//2:] # 递归(树),分治 left_max, right_max = solve2(left_list), solve2(right_list) # 合并 return get_max([left_max, right_max])if __name__ == "__main__": # 测试数据 test_list = [12,2,23,45,67,3,2,4,45,63,24,23] # 求最大值 print(solve(test_list)) # 67 print(solve2(test_list)) # 67
题目2. 给定一个顺序表,判断某个元素是否在其中。
# 子问题算法(子问题规模为 1)def is_in_list(init_list, el): return [False, True][init_list[0] == el]# 分治法def solve(init_list, el): n = len(init_list) if n == 1: # 若问题规模等于 1,直接解决 return is_in_list(init_list, el) # 分解(子问题规模为 n/2) left_list, right_list = init_list[:n//2], init_list[n//2:] # 递归(树),分治,合并 res = solve(left_list, el) or solve(right_list, el) return resif __name__ == "__main__": # 测试数据 test_list = [12,2,23,45,67,3,2,4,45,63,24,23] # 查找 print(solve2(test_list, 45)) # True print(solve2(test_list, 5)) # False
新闻热点
疑难解答