首页 > 编程 > Python > 正文

Python 装饰器使用详解

2020-02-16 01:59:19
字体:
来源:转载
供稿:网友

装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象.

  经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等场景。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用。

  先来看一个简单例子:

def now():  print('2017_7_29')

现在有一个新的需求,希望可以记录下函数的执行日志,于是在代码中添加日志代码:

def now():  print('2017_7_29')  logging.warn("running")

假设有类似的多个需求,怎么做?再写一个logging在now函数里?这样就造成大量雷同的代码,为了减少重复写代码,我们可以这样做,重新定义一个函数:专门处理日志 ,日志处理完之后再执行真正的业务代码.

def use_logging(func):     logging.warn("%s is running" % func.__name__)     func() def now():     print('2017_7_29')   use_logging(now)

在实现,逻辑上不难, 但是这样的话,我们每次都要将一个函数作为参数传递给日志函数。而且这种方式已经破坏了原有的代码逻辑结构,之前执行业务逻辑时,执行运行now(),但是现在不得不改成use_logging(now)。那么有没有更好的方式的呢?当然有,答案就是装饰器。

  首先要明白函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。例如:

def now():  print('2017_7_28')f=nowf()# 函数对象有一个__name__属性,可以拿到函数的名字print('now.__name__:',now.__name__)print('f.__name__:',f.__name__)

简单装饰器

本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的decorator,可以定义如下:

def log(func):  def wrapper(*args,**kw):    print('call %s():'%func.__name__)    return func(*args,**kw)  return wrapper

# 由于log()是一个decorator,返回一个函数,所以,原来的now()函数仍然存在,
# 只是现在同名的now变量指向了新的函数,于是调用now()将执行新函数,即在log()函数中返回的wrapper()函数。
# wrapper()函数的参数定义是(*args, **kw),因此,wrapper()函数可以接受任意参数的调用。
# 在wrapper()函数内,首先打印日志,再紧接着调用原始函数。

上面的log,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数.现在执行:

now = log(now)now()

输出结果:
    call now():
    2017_7_28

函数log就是装饰器,它把执行真正业务方法的func包裹在函数里面,看起来像now被log装饰了。在这个例子中,函数进入时 ,被称为一个横切面(Aspect),这种编程方式被称为面向切面的编程(Aspect-Oriented Programming)。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表