拥有高方差使得决策树(secision tress)在处理特定训练数据集时其结果显得相对脆弱。bagging(bootstrap aggregating 的缩写)算法从训练数据的样本中建立复合模型,可以有效降低决策树的方差,但树与树之间有高度关联(并不是理想的树的状态)。
随机森林算法(Random forest algorithm)是对 bagging 算法的扩展。除了仍然根据从训练数据样本建立复合模型之外,随机森林对用做构建树(tree)的数据特征做了一定限制,使得生成的决策树之间没有关联,从而提升算法效果。
本教程将实现如何用 Python 实现随机森林算法。
bagged decision trees 与随机森林算法的差异; 如何构建含更多方差的装袋决策树; 如何将随机森林算法运用于预测模型相关的问题。算法描述
这个章节将对随机森林算法本身以及本教程的算法试验所用的声纳数据集(Sonar dataset)做一个简要介绍。
随机森林算法
决策树运行的每一步都涉及到对数据集中的最优分裂点(best split point)进行贪婪选择(greedy selection)。
这个机制使得决策树在没有被剪枝的情况下易产生较高的方差。整合通过提取训练数据库中不同样本(某一问题的不同表现形式)构建的复合树及其生成的预测值能够稳定并降低这样的高方差。这种方法被称作引导聚集算法(bootstrap aggregating),其简称 bagging 正好是装进口袋,袋子的意思,所以被称为「装袋算法」。该算法的局限在于,由于生成每一棵树的贪婪算法是相同的,那么有可能造成每棵树选取的分裂点(split point)相同或者极其相似,最终导致不同树之间的趋同(树与树相关联)。相应地,反过来说,这也使得其会产生相似的预测值,降低原本要求的方差。
我们可以采用限制特征的方法来创建不一样的决策树,使贪婪算法能够在建树的同时评估每一个分裂点。这就是随机森林算法(Random Forest algorithm)。
与装袋算法一样,随机森林算法从训练集里撷取复合样本并训练。其不同之处在于,数据在每个分裂点处完全分裂并添加到相应的那棵决策树当中,且可以只考虑用于存储属性的某一固定子集。
对于分类问题,也就是本教程中我们将要探讨的问题,其被考虑用于分裂的属性数量被限定为小于输入特征的数量之平方根。代码如下:
num_features_for_split = sqrt(total_input_features)
这个小更改会让生成的决策树各不相同(没有关联),从而使得到的预测值更加多样化。而多样的预测值组合往往会比一棵单一的决策树或者单一的装袋算法有更优的表现。
声纳数据集(Sonar dataset)
我们将在本教程里使用声纳数据集作为输入数据。这是一个描述声纳反射到不同物体表面后返回的不同数值的数据集。60 个输入变量表示声纳从不同角度返回的强度。这是一个二元分类问题(binary classification problem),要求模型能够区分出岩石和金属柱体的不同材质和形状,总共有 208 个观测样本。
新闻热点
疑难解答