首页 > 编程 > Python > 正文

遗传算法之Python实现代码

2020-02-16 10:21:05
字体:
来源:转载
供稿:网友

写在前面

之前的文章中已经讲过了遗传算法的基本流程,并且用MATLAB实现过一遍了。这一篇文章主要面对的人群是看过了我之前的文章,因此我就不再赘述遗传算法是什么以及基本的内容了,假设大家已经知道我是怎么写遗传算法的了。

Python的遗传算法主函数

我的思想是,创建一个染色体的类,其中包括了两个变量:染色体chrom与适应度fitness。因此我们就可以通过直接建立对象来作为种群中的个体。

#染色体的类class Chrom:  chrom = []  fitness = 0  def showChrom(self):    print(self.chrom)  def showFitness(self):    print(self.fitness)

所以我们开始设置基础参数。其中种群的表达方式我用的是字典,也就是用一个字典来保存种群内的所有个体,这个也是我想出来的创建多个对象的方法。

将字典的索引为个体的标号,如:chrom1, chrom2等。字典索引的值就是一个对象。这个对象拥有两个属性,就是染色体与适应度。

其实在这一方便来说,我觉得在思路上是优于利用MATLAB的矩阵式编程的。因为这样可以很直观的将个体与个体的属性这一种思想给表达出来,相比一堆矩阵来说,在逻辑上比较容易接受。

#基础参数N = 200 #种群内个体数目mut = 0.2 #突变概率acr = 0.2 #交叉概率pop = {} #存储染色体的字典for i in range(N):  pop['chrom'+str(i)] = Chrom()chromNodes = 2 #染色体节点数(变量个数)iterNum = 10000 #迭代次数chromRange = [[0, 10], [0, 10]] #染色体范围aveFitnessList = [] #平均适应度bestFitnessList = [] #最优适应度

之后就是初始染色体了,其中就牵扯到了各种用来初始化种群、计算适应度、找最优等函数,我在这里分出了两个文件,分别为Genetic.py与Fitness.py。

Genetic.py里面有八个函数,主要包含了作用于种群或者染色体操作的函数,分别为:

    findBest函数,用于寻找种群中的最优染色体; findworse函数,用于寻找种群中的最劣染色体; initialize函数,用于初始化种群; calAveFitness函数,用于计算种群的平均适应度; mutChrom函数,用于对染色体进行变异; inRange函数,用于判断染色体节点值是否越界; acrChrom函数,用于对染色体进行交叉; compareChrom函数,用于比较两个染色体孰优孰劣。

Fitness.py里面有两个函数,主要包含了对适应度操作的函数,分别为:

    calFitness函数,用来迭代每一个个体,并计算适应度(利用funcFitness函数计算); funcFitness函数,计算单个个体的适应度。

因此可以列出初始化代码为

#初始染色体pop = Genetic.initialize(pop, chromNodes, chromRange)pop = Fitness.calFitness(pop) #计算适应度bestChrom = Genetic.findBest(pop) #寻找最优染色体bestFitnessList.append(bestChrom[1]) #将当前最优适应度压入列表中aveFitnessList.append(Genetic.calAveFitness(pop, N)) #计算并存储平均适应度            
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表