首页 > 编程 > Python > 正文

Python 多进程并发操作中进程池Pool的实例

2020-02-16 10:33:38
字体:
来源:转载
供稿:网友

在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,10几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,这时候进程池Pool发挥作用的时候就到了。

Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。这里有一个简单的例子:

#!/usr/bin/env python#coding=utf-8"""Author: SquallLast modified: 2011-10-18 16:50Filename: pool.pyDescription: a simple sample for pool class"""from multiprocessing import Poolfrom time import sleepdef f(x):  for i in range(10):    print '%s --- %s ' % (i, x)    sleep(1)def main():  pool = Pool(processes=3)  # set the processes max number 3  for i in range(11,20):    result = pool.apply_async(f, (i,))  pool.close()  pool.join()  if result.successful():    print 'successful'if __name__ == "__main__":  main()

先创建容量为3的进程池,然后将f(i)依次传递给它,运行脚本后利用ps aux | grep pool.py查看进程情况,会发现最多只会有三个进程执行。pool.apply_async()用来向进程池提交目标请求,pool.join()是用来等待进程池中的worker进程执行完毕,防止主进程在worker进程结束前结束。但必pool.join()必须使用在pool.close()或者pool.terminate()之后。其中close()跟terminate()的区别在于close()会等待池中的worker进程执行结束再关闭pool,而terminate()则是直接关闭。result.successful()表示整个调用执行的状态,如果还有worker没有执行完,则会抛出AssertionError异常。

利用multiprocessing下的Pool可以很方便的同时自动处理几百或者上千个并行操作,脚本的复杂性也大大降低。

——————————————————————————————————

Python多进程并发(multiprocessing)

由于Python设计的限制(我说的是咱们常用的CPython)。最多只能用满1个CPU核心。

Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。

1、新建单一进程

如果我们新建少量进程,可以如下:

import multiprocessingimport timedef func(msg):for i in xrange(3):print msgtime.sleep(1)if __name__ == "__main__":p = multiprocessing.Process(target=func, args=("hello", ))</ p.start()p.join()print "Sub-process done."            
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表