首页 > 编程 > Python > 正文

Python内存管理方式和垃圾回收算法解析

2020-02-16 10:38:24
字体:
来源:转载
供稿:网友

概要

在列表,元组,实例,类,字典和函数中存在循环引用问题。有 __del__ 方法的实例会以健全的方式被处理。给新类型添加GC支持是很容易的。支持GC的Python与常规的Python是二进制兼容的。

分代式回收能运行工作(目前是三个分代)。由 pybench 实测的结果是大约有百分之四的开销。实际上所有的扩展模块都应该依然如故地正常工作(我不得不修改了标准发行版中的 new 和 cPickle 模块)。一个叫做 gc 的新模块马上就可以用来调试回收器和设置调试选项。

回收器应该是跨平台可移植的。Python 的补丁版本通过了所有的回归测试并且跑 Grail、Idle 和 Sketch 的时候没有任何问题。

自 Python 2.0 和之后的版本,可移植的垃圾回收机制已经包括在其中了。垃圾回收默认是开启的。请高兴些吧!

为什么我们需要垃圾回收?

目前版本的 Python 采用引用计数的方式来管理分配的内存。Python 的每个对象都有一个引用计数,这个引用计数表明了有多少对象在指向它。当这个引用计数为 0 时,该对象就释放了。引用计数对于多数程序都工作地很好。然而,引用计数有一个本质上的缺陷,是由于循环引用引起的。循环引用最简单的例子就是一个引用自身的对象。比如:

>>> l = []>>> l.append(l)>>> del l

这个创建的列表的引用计数现在是 1。然而,因为它从 Python 内部已经无法访问,并且可能没法再被用到了,它应该被当作垃圾。在目前版本的 Python 中,这个列表永远不会被释放。

一般情况下循环引用不是一个好的编程实践,并且几乎总该被避免。然而,有时候很难避免制造循环引用,要么则是程序员甚至没有察觉到循环引用的问题。对于长期运行的程序,比如服务器,这个问题特别令人烦恼。人们可不想他们的服务器因为循环引用无法释放访问不到的对象而耗尽内存。对于大型程序,很难发现循环引用是怎么创造出来的。

“传统的”垃圾回收是怎样的?

传统的垃圾回收(比如标记-清除法或者停止-拷贝法)通常工作如下:

找到系统的根对象。根对象就像是全局的环境(比如 Python 中的 __main__ 模块)和堆栈上的对象。
从这些对象搜索所有的可以访问的对象。这些对象都是“活跃”的。
释放其他所有对象。
不幸的是这个方法不能用于当前版本的 Python。由于扩展模块的工作方式,Python 不能完全地确定根对象集合。如果根对象集合没法被准确地确定,我们就有释放仍然被引用的对象的风险。即使用其他方式设计扩展模块,也没有可移植的方式来找到当前 C 堆栈上的对象。而且,引用计数提供了一些 Python 程序员已然期待的有关局部性内存引用和终结语义的好处。最好是我们能够找到一个即能使用引用计数,又能够释放循环引用的的办法。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表