这篇文章并不是介绍排序算法原理的,纯粹是想比较一下各种排序算法在真实场景下的运行速度。
算法由 Python 实现,可能会和其他语言有些区别,仅当参考就好。
测试的数据是自动生成的,以数组形式保存到文件中,保证数据源的一致性。
排序算法
直接插入排序
时间复杂度:O(n²)
空间复杂度:O(1)
稳定性:稳定
def insert_sort(array): for i in range(len(array)): for j in range(i): if array[i] < array[j]: array.insert(j, array.pop(i)) break return array
希尔排序
时间复杂度:O(n)
空间复杂度:O(n√n)
稳定性:不稳定
def shell_sort(array): gap = len(array) while gap > 1: gap = gap // 2 for i in range(gap, len(array)): for j in range(i % gap, i, gap): if array[i] < array[j]: array[i], array[j] = array[j], array[i] return array
简单选择排序
时间复杂度:O(n²)
空间复杂度:O(1)
稳定性:不稳定
def select_sort(array): for i in range(len(array)): x = i # min index for j in range(i, len(array)): if array[j] < array[x]: x = j array[i], array[x] = array[x], array[i] return array
堆排序
时间复杂度:O(nlog₂n)
空间复杂度:O(1)
稳定性:不稳定
def heap_sort(array): def heap_adjust(parent): child = 2 * parent + 1 # left child while child < len(heap): if child + 1 < len(heap): if heap[child + 1] > heap[child]: child += 1 # right child if heap[parent] >= heap[child]: break heap[parent], heap[child] = / heap[child], heap[parent] parent, child = child, 2 * child + 1 heap, array = array.copy(), [] for i in range(len(heap) // 2, -1, -1): heap_adjust(i) while len(heap) != 0: heap[0], heap[-1] = heap[-1], heap[0] array.insert(0, heap.pop()) heap_adjust(0) return array
冒泡排序
时间复杂度:O(n²)
空间复杂度:O(1)
稳定性:稳定
def bubble_sort(array): for i in range(len(array)): for j in range(i, len(array)): if array[i] > array[j]: array[i], array[j] = array[j], array[i] return array
快速排序
时间复杂度:O(nlog₂n)
空间复杂度:O(nlog₂n)
稳定性:不稳定
def quick_sort(array): def recursive(begin, end): if begin > end: return l, r = begin, end pivot = array[l] while l < r: while l < r and array[r] > pivot: r -= 1 while l < r and array[l] <= pivot: l += 1 array[l], array[r] = array[r], array[l] array[l], array[begin] = pivot, array[l] recursive(begin, l - 1) recursive(r + 1, end) recursive(0, len(array) - 1) return array
新闻热点
疑难解答