首页 > 编程 > Python > 正文

利用matplotlib+numpy绘制多种绘图的方法实例

2020-02-16 01:29:20
字体:
来源:转载
供稿:网友

前言

matplotlib 是Python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。本文将以例子的形式分析matplot中支持的,分析中常用的几种图。其中包括填充图、散点图(scatter plots)、. 条形图(bar plots)、等高线图(contour plots)、 点阵图和3D图,下面来一起看看详细的介绍:

一、填充图

参考代码

from matplotlib.pyplot import *x=linspace(-3,3,100)y1=np.sin(x)y2=np.cos(x)fill_between(x,y1,y2,where=(y1>=y2),color='red',alpha=0.25)fill_between(x,y1,y2,where=(y<>y2),color='green',alpha=0.25)plot(x,y1)plot(x,y2)show()

简要分析

这里主要是用到了fill_between函数。这个函数很好理解,就是传入x轴的数组和需要填充的两个y轴数组;然后传入填充的范围,用where=来确定填充的区域;最后可以加上填充颜色啦,透明度之类修饰的参数。

当然fill_between函数还有更加高级的用法,详见fill_between用法或者help文档。

效果图

二、散点图(scatter plots)

参考代码

from matplotlib.pyplot import *n = 1024X = np.random.normal(0,1,n)Y = np.random.normal(0,1,n)T = np.arctan2(Y,X)scatter(X,Y, s=75, c=T, alpha=.5)xlim(-1.5,1.5)ylim(-1.5,1.5)show()

简要分析

首先介绍一下numpy 的normal函数,很明显,这是生成正态分布的函数。这个函数接受三个参数,分别表示正态分布的平均值,标准差,还有就是生成数组的长度。很好记。

然后是arctan2函数,这个函数接受两个参数,分别表示y数组和x数组,然后返回对应的arctan(y/x)的值,结果是弧度制。

接下来用到了绘制散点图的scatter方法,首先当然是传入x和y数组,接着s参数表示scale,即散点的大小;c参数表示color,我给他传的是根据角度划分的一个数组,对应的就是每一个点的颜色(虽然不知道是怎么对应的,不过好像是一个根据数组内其他元素进行的相对的转换,这里不重要了,反正相同的颜色赋一样的值就好了);最后是alpha参数,表示点的透明度。

至于scatter函数的高级用法可以参见官方文档scatter函数或者help文档。

最后设置下坐标范围就好了。

效果图

三、条形图(bar plots)

参考代码

from matplotlib.pyplot import *n = 12X = np.arange(n)Y1 = (1-X/float(n)) * np.random.uniform(0.5,1.0,n)Y2 = (1-X/float(n)) * np.random.uniform(0.5,1.0,n)bar(X, +Y1, facecolor='#9999ff', edgecolor='white')bar(X, -Y2, facecolor='#ff9999', edgecolor='white')for x,y in zip(X,Y1): text(x+0.4, y+0.05, '%.2f' % y, ha='center', va= 'bottom')for x,y in zip(X,Y2): text(x+0.4, -y-0.05, '%.2f' % y, ha='center', va= 'top')xlim(-.5,n)xticks([])ylim(-1.25,+1.25)yticks([])show()            
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表