本文中,我们将进行大量的编程——但在这之前,我们先介绍一下我们今天要解决的实例问题。
1) 预测房子价格
房价大概是我们中国每一个普通老百姓比较关心的问题,最近几年保障啊,小编这点微末工资着实有点受不了。
我们想预测特定房子的价值,预测依据是房屋面积。
2) 预测下周哪个电视节目会有更多的观众
闪电侠和绿箭侠是我最喜欢的电视节目,特别是绿箭侠,当初追的昏天黑地的,不过后来由于一些原因,没有接着往下看。我想看看下周哪个节目会有更多的观众。
3) 替换数据集中的缺失值
我们经常要和带有缺失值的数据集打交道。这部分没有实战例子,不过我会教你怎么去用线性回归替换这些值。
所以,让我们投入编程吧(马上)
在动手之前,去把我以前的文章(Python Packages for Data Mining)中的程序包安装了是个好主意。
1) 预测房子价格
我们有下面的数据集:
输入编号 | 平方英尺 | 价格 |
---|---|---|
1 | 150 | 6450 |
2 | 200 | 7450 |
3 | 250 | 8450 |
4 | 300 | 9450 |
5 | 350 | 11450 |
6 | 400 | 15450 |
7 | 600 | 18450 |
步骤:
在线性回归中,我们都知道必须在数据中找出一种线性关系,以使我们可以得到θ0和θ1。 我们的假设方程式如下所示:
新闻热点
疑难解答